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Abstract

With artificially intelligent agents entering more and more areas of our daily lives,

we need methods to ensure we are only using the best algorithms to guarantee our

safety and high quality of life, and there is a clear lack of standard benchmarks for

Multi-Agent Reinforcement Learning (MARL) algorithms. The Starcraft Multi-Agent

Challenge (SMAC) claims to be a good candidate for a standard MARL benchmark,

but it is fully based on top of a heavy, closed-source computer game Starcraft II. This

makes it completely closed to extension for researchers not familiar with the game, and

requires the knowledge and use of other proprietary tools specific to the game for any

meaningful contribution to the challenge. We introduce SMAClite – a challenge based

on SMAC that is both completely decoupled from Starcraft II and open-source, along

with a framework which makes it possible to create new content for SMAClite without

any special knowledge. We conduct experiments to show it is equivalent to SMAC in

many ways, and it outperforms SMAC in both speed and memory.
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Chapter 1

Introduction

1.1 Motivation

As we continue to make advancements into artificial intelligence research, it inevitably

makes its way into our daily lives. Examples of autonomous agents popular in recent

times range from robotic vacuum cleaners (e.g. [1]) and self-driving cars (e.g. [2]) to

robots making lives easier from behind the scenes, such as warehouse optimization

robots (e.g. [3]). With all this attention in research, a natural need arises for standardized

benchmarks for the various types of artificial intelligence (AI) models, to always make

sure we are using the best technology available to make our everyday lives easier.

Multi-agent reinforcement learning (MARL) is a branch of machine learning dealing

with multiple autonomous AI entities – usually called agents – existing in the same

space. In this work, are interested in cooperative agents, ones that work together to

accomplish some goal – like those one would use in self-driving cars to avoid collisions

and reach their destination quickly. Interestingly, there is currently no consensus in

the research community about what a standard benchmark for this type of agents

should be. Just by looking at a recent benchmarking paper [4] we can count 5 different

benchmarking tasks.

The Starcraft Multi-Agent Challenge (SMAC) [5] claims to be one candidate for

such a standard benchmark. It is built on top a real-time strategy computer game

Starcraft II (SC2), and makes use of an API – an interface between the game and the AI

agents – made available by Vinyals et al. [6]. It presents a mini-game where each agent

controls a single combat unit (i.e. a single soldier) in one of several available battle

scenarios against an enemy team controlled by the game’s built-in AI. Its authors claim

that SMAC is a good benchmark because it presents a challenge where the solution

1



Chapter 1. Introduction 2

is not straightforward – in most of the scenarios the most obvious strategy of running

forward and attacking is not good enough, and will result in a quick loss due to the

enemy army having better units or more numbers.

While the idea is promising, we can spot several problems with SMAC if it is to

become a universally accepted benchmark. The biggest issue we see is that it remains

highly inaccessible for people unfamiliar with the game it is based in. This manifests

in many ways, e.g. using terms from the game such as ”zergling” or ”marine” without

further elaboration. It simply might not be obvious to those of AI researchers who do

not have experience with SC2 what the difference between the two is. To create custom

scenarios or units for SMAC, one is required to use the official Starcraft II map editor,

requiring people to learn an unusual and proprietary tool, and put in a lot of effort for a

single benchmark.

On top of that, SMAC itself uses SC2 as its key dependency, requiring a large-sized

(ca. 3.7 GB) download and a complicated setup process for any training or inference,

not to mention running SC2 alongside SMAC at all times, consuming extra CPU and

memory resources. This is made even worse by the fact that SMAC uses only a subset

of the SC2 features – a lot of the required downloadable and computational resources

are simply redundant, and due to that training agents on SMAC is more expensive than

necessary for the task it presents.

1.2 Objectives

Our main goal for this project is to implement a challenge similar to SMAC, but
completely decoupled from the Starcraft II dependency, and prove it preserves
the challenging aspects of SMAC. We name this challenge Starcraft Multi-Agent

Challenge lite (SMAClite). We also wish to make the battle scenarios and units as easy

to modify as possible (also allowing easy creation of completely new ones), all while

keeping the installation process as simple as possible. We wish to preserve the outer

interface of SMAC, only changing the inner workings to match our goal, to allow AI

developers to reuse their code for handling SMAC with minimal modifications.

Roughly, our work can be divided into three milestone objectives. First of all, we

aim to implement the challenge itself, together with the opponent AI and a simple 2D

rendering solution allowing to visualize what is happening inside. We wish to maintain

parity with Starcraft II as far as it is necessary to maintain parity with SMAC, and

omit anything else. One of the goals we keep in mind while implementing SMAClite
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is environment performance, doing our best to keep it as fast and as cheap to run as

possible.

Second of all, we wish to make the training of multi-agent reinforcement learning

algorithms with SMAClite as frictionless as possible. For this reason, we aim to integrate

it with the ePyMARL framework for training and running MARL models, introduced

by Papoudakis et al. [4]. With this accomplished, training a model in SMAClite should

be as simple as running a single terminal command.

Finally, we will run experiments using the trained models, to verify the deliverables

of our two previous milestones are sound. Our experiments will include quantitative

analysis by comparing the reward (standard MARL metric, see section 2.1) achieved by

the various MARL algorithms in SMAClite, as well as qualitative analysis, looking at

the combat strategies employed by the agents on a case-by-case basis, and verifying

they do indeed outsmart the handwritten enemy AI. On top of that, we wish to take

the models trained on SMAClite, and put them inside the original SMAC environment

without any further training, to see how much potential for transfer learning there is

between the environments.

1.3 Related Work

It is important to note that popular benchmarks, accepted by the research community as

the standard, do exist for the single-agent variant of reinforcement learning. MuJoCo [7],

based on the framework by Todorov et al. [8], is a set of tasks for robotic manipulation

in a 3D world. Arcade Learning environment [9] is a suite of 55 classic arcade games

with an interface that allows AI agents to attempt to master them. Both of them are

widely used as reinforcement learning benchmarks.

There are several non-Starcraft II multi-agent benchmarks worth mentioning. Multi-

Agent Particle Environment [10] places the agents in a 2D environment and has them

accomplish various physical tasks such as moving into specific positions or pushing

objects around, also allowing for some limited communication between agents. The

Hanabi challenge [11] puts the agents in the cooperative board game Hanabi, which

only allows for limited, strictly formatted communication. The authors of the MARL

benchmark paper [4] also make available two more benchmarks, both based in simple

2D worlds: Level-Based Foraging, where agents have to collect food placed in the

world, and Multi-Robot Warehouse, where agents have to locate and deliver specific

items to specific shelves in a warehouse.
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One other multi-agent challenge based on a modern computer game is the OpenAI

Five project [12], which put agents inside a full five versus five match of a strategy

game Dota 2, showing impressive scale of the game and the trained models.

Training autonomous agents in Starcraft II started becoming popular upon the

publication of its API [6], with the most popular result being the AlphaStar model, said

to be capable of beating 99.8% of officially ranked human players at the full game of

Starcraft II [13]. Our work is mostly based on the work of the creators of SMAC [5], of

which our project can be considered major rewrite with added accessibility features and

improved performance. Since its publication, SMAC has been used as a benchmark for

autonomus agents in numerous works (e.g. [4, 14, 15]), with its popularity being a sign

that it does fill a niche – it is our hope that our project will help it become more widely

adapted.

There are several projects that are tangentially related to ours, since they also aim

to improve SMAC, but take a different approach. SMACv2 [16] seeks to make the

challenges more difficult by randomizing the team compositions and starting locations,

and SMAC+ [17] increases its difficulty by adding scenarios requiring the agents to

solve multi-step challenges including mazes, making use of terrain and line of sight

restrictions. Both of these present interesting additions to the SMAC paradigm, however

neither addresses the issues we wish to tackle. We believe the additions introduced by

them are good ideas for future developoment of SMAClite, but ideally, in the scope of

this project, we would like to maintain the challenge’s difficulty on the same level as

the original.

1.4 Report Structure

We structure our report as follows: in chapter 1 we introduce the problem and briefly

describe what we wish to accomplish. Then, in chapter 2 we describe in detail the

preliminary knowledge necessary to understand our work, and in chapter 3 we provide

a thorough specification of our project. We continue in chapter 4 with a description

of the experiments used by us to verify our implementation is sound, as well as what

conclusions we can draw from them. We conclude in 5 with ideas for future work

related to our project and a summary of our contribution.



Chapter 2

Background

2.1 Multi-Agent Reinvorcement Learning

Multi-Agent Reinforcement learning (MARL) allows for multiple autonomous agents to

coexist in the same space. Formally, the setup of MARL consists of several agents that

can perform specific actions, and the environment – a term that encompasses everything

outside of the agents, that the agents can interact with. The specific formalisation of

MARL that interests us in our work is called Decentralized Partially Observable
Markov Decision Problems (in short: Dec-POMDPs) [20].

A Dec-POMDP is a cooperative process defined as a tuple (N ,S ,A ,O,Ω,P ,R ),

where N = {1 . . .N} is the set of agents participating in the process. Agents interact

with the environment in discrete timesteps t ∈ N. In each timestep t the environment has

some true active state st ∈ S , and each agent i receives an observation oi
t ∼ Ω(i,st), oi

t ∈
O. Each agent i then selects an action ai

t ∈ A . After each timestep t the agents receive a

shared reward R (a1
t ,a

2
t , . . . ,a

N
t ,st) = rt+1 ∈R, and the environment enters the next state

st+1 ∼ P (a1
t ,a

2
t , . . . ,a

N
t ,st), st+1 ∈ S . In figure 2.1 we include a diagram visualizing

this process.

In MARL, and in reinforcement learning, the agents’ goal at each point in time t is

to maximize the discounted cumulative reward ∑
∞
i=0 γirt+i, where γ is a discount factor.

When γ = 1, the discounted reward is equal to the actual reward ∑t rt – we will report

this sum when presenting evaluation results.

5
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Agent 1

Agent 2

Agent N

. . .

Environment

rt+1 = R (at ,st)

st+1 ∼ P (at ,st)

∀i oi
t+1 ∼ Ω(i,st+1)

o1
t ,rt

o2
t ,rt

oN
t ,rt

a1
t

a2
t

aN
t

Figure 2.1: An illustration of the Dec-POMDP loop, adapted from a similar, single-agent

figure in chapter 3 of the book by Sutton and Barto [18]. We are reusing this figure from

our proposal [19] to help readers more easily understand the loop.

2.2 MARL algorithms

In our work, we wish to run a benchmark of several MARL algorithms using an

environment we will implement. We will use the list of algorithms compiled in the

benchmark paper by Papoudakis et al. [4], and reuse their implementations available

in the ePyMARL framework for evaluation. In this subsection, we go briefly over the

algorithms used and the main category split between them.

2.2.1 Independent Learning

In the Independent Learning approach, each agent treats each other agent as an

element of the environment when learning. The algorithms falling into this category

that we wish to run, following the benchmark paper, are: Independent Q-learning (IQL),

introduced by Tan [21], which is an independent multi-agent version of Q-learning [22],

Independent synchronous Advantage Actor-Critic (IA2C), which is an independent

multi-agent version of the Advantage Actor-critic algorithm introduced by Mnih et al.
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[23], and Independent Proximal Policy Optimisation (IPPO), which is an independent

multi-agent variant of the PPO algorithm introduced by Schulman et al. [24].

2.2.2 Centralized Training, Decentralized Execution

This category of algorithms allows the training algorithm full knowledge of all of the

agents’ observations, as well as the true environment state, during training time. This

allows for more informed decisions about updating the parameters of the agents. The

agents are still, however, completely independent during the environment’s execution.

One subcategory of algorithms following this approach are centralised policy gradi-

ent methods, in which a centralized ”critic” network decides about the value of each

state, while each agent acts upon that value function in a decentralized manner. This

category includes Multi-Agent Deep Deteministic Policy Gradient (MADDPG), in-

troduced by Lowe et al. [25], Counterfactual Multi-Agent (COMA), introduced by

Foerster et al. [26], Multi-Agent Asynchronuous Advantage Actor-Critic (MAA2C),

a simple algorithm used as a baseline, explained further by Papoudakis et al. [4], and

Multi-Agent Proximal Policy Optimisation (MAPPO), introduced by Yu et al. [15], an

extension of the IPPO algorithm mentioned above.

Another subcategory are value decomposition algorithms, which aim to achieve

a single joint value function by mixing the individual agents’ value functions. This

category includes Value Decomposition Networks (VDN), originally introduced by

Sunehag et al. [27], and QMIX, originally introduced by Rashid et al. [14].

2.3 SMAC

2.3.1 Overview

In this section we go over the SMAC environment to the extent that is relevant to our

project. Our project only replicates SMAC in its default configuration, omitting any

optional parameters, so we omit those here as well.

In SMAC, each agent controls one unit (we refer to units controlled by agents as

allied units throughout this paper) and is tasked with defeating a group of enemy units

controlled by Starcraft II’s built-in AI opponent. In Starcraft, a single combat unit is

a single soldier in an army comprised of any number of units. SMAC defines several

combat scenarios, differing in army compositions or terrain layout, and by result, in

difficulty.
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Figure 2.2: Visualizations of the SMAC environment. (left) The corridor scenario

(right) The MMM2 scenario.

Units are divided into several types with different attributes (health, attack, etc.)

– but note that the SMAC environment only differentiates between unit types in the

state/observation vectors if there is more than 1 unit type within a single team in the

scenario – we will refer to this as the scenario ”distinguishing unit types”.

Each unit uses one of two combat styles, determined by its type – either damage-

dealing or healing. The only way to defeat a unit is to bring its health points down to 0

by attacking it, which is the job of damage-dealing units. Healing units can counteract

that somewhat by regenerating their allies’ health points.

Some unit types, once hit, do not regenerate health in any way. Other units have

innate health regeneration that is always active. Yet another group of unit types has

special shields on top of their health points that regenerate after a period of not taking

damage, and the shields have to be brought down to 0 before the units’ health can be

hit. Due to limitations of Starcraft II, either all units in a team possess shields, or none

of them.

A unit’s type also defines its attack range – some units (called melee units) need

to get up close to an enemy in order to attack, while others can fire from a distance.

Additionally, each unit has to wait a certain amount of time after attacking before it

attacks again – this amount of time is called the unit’s cooldown.

2.3.2 Actions

Each agent has access to several actions, which may or may not be available at any

given timestep – the environment makes available a method to get currently available

actions for each agent. If an unavailable action is chosen by the agent, SMAC returns

an error and ceases execution. The possible actions are:

no-op: Has no effect, this action is only available to dead units. All other actions are
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only available to living units, so all dead units must always pick this action.

stop: Orders the unit to stop in its place and do nothing. The action is always available

to alive units.

moveN, moveE, moveS, and moveW: Orders the unit to move in the chosen cardinal

direction (north, east, south, or west). Each action move{X} is available to alive

units only if a point near to the unit’s current position in the direction X is within

the bounds of the map and is not on rough (i.e. non-walkable) terrain.

target1, target2, . . . : Orders the unit to target the unit with the specified team-

specific ID – for damage-dealing units, this refers to targeting enemy units to

attack, for healing units, to targeting allies to heal. SMAC defines a constant

targeting range for agents – each action target{i} is available for alive units

only if the target unit i is alive and within this targeting range.

Note that because the number of these actions varies by number of units, the total

number of actions |A | varies in SMAC per specific combat scenario.

2.3.3 State

The true state of the environment is a vector divided into several sections, in this order:

• For each ally unit in order of their IDs: its current health, its current cooldown,

its X and Y coordinates relative to the center of the map, its current shields (only

if allies have shields), and a one-hot vector representing its unit type (only if

scenario distinguishes unit types).

• For each enemy unit in order of their IDs: its current health, its X and Y co-

ordinates relative to the center of the map, its current shields (only if enemies

have shields), and a one-hot vector representing its unit type (only if the scenario

distinguishes unit types).

• For each agent in order of their IDs: a one-hot vector representing the action

action taken by them in the previous timestep.

Note that all features within the state vector are normalized to be between zero and one –

for example, the health value is divided by the maximum health value of the given unit.
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2.3.4 Observations

Each agent, in each time-step, receives an observation representing what is visible to

the agent within the environment. If the agent’s unit is dead, the agent simply receives

a vector of zeroes. SMAC also defines a constant sight range for agents – if a unit is

dead, or is further from the agents’ own unit than this sight range, any information in

the observation vector about this unit is completely zeroed out. The observation vector

includes, in this order:

• For each cardinal direction, whether movement is possible in that direction (if it

is not, it could be because of rough terrain or because the unit is at the edge of

the map).

• For each enemy unit in order of their IDs, if it is alive: whether the agent’s unit

can attack it (if it can’t, the enemy is outside the agent attack range mentioned in

the previous subsection), its distance to the agent’s unit, its X and Y coordinates

relative to the agent’s unit, its health, its shields (only if enemies have shields),

and a one-hot vector representing its unit type (only if the scenario distinguishes

unit types).

• For each ally unit in order of their IDs, if it is alive: a literal 1 (to distinguish

from units that are dead or too far), its distance to the agent’s unit, its X and

Y coordinates relative to the agent’s unit, its health, its shields (only if allies

have shields), and a one-hot vector representing its unit type (only if the scenario

distinguishes unit types).

• For the agent’s own unit: its health, its shields (only if allies have shields), and a

one-hot vector representing its unit type (only if the scenario distinguishes unit

types).

Note that, similarly to the state features, all observation features are normalized to be

between zero and one.

2.3.5 Rewards

After each time-step all agents receive a shared reward equal to the sum of health points

and shield points removed from enemies in that timestep. A small bonus of 10 is added

for each eliminated enemy unit and a bigger bonus of 200 is added for winning the

scenario. The reward is normalized by dividing it by the sum of all health and shield
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points of enemy units and any possible bonuses, and multiplying by 20 – thus, the

possible rewards should be between zero and twenty. Do note, however, that the actual

cumulative reward received by the agents by the end of an episode might exceed 20 due

to health and shield regeneration.

2.4 Optimal Reciprocal Collision Avoidance

2.4.1 Overview

In Starcraft II, units move around the battlefield populated by other units and avoid

collision by stepping to the side if they would get in the way of another unit. This

makes the battlefield feel more realistic and physical, and allows for some advanced

strategies like body-blocking or surrounding (in essence, limiting other units’ movement

by positioning oneself strategically). We felt it was crucial to reproduce this behaviour

in our environment. However, because Starcraft II is a proprietary, closed-source piece

of software, we cannot use the exact algorithms used in SMAC. To fill this gap we chose

the Optimal Reciprocal Collision Avoidance (ORCA) algorithm by Berg et al. [28].

The ORCA algorithm fills several criteria desirable for our environment. Much like

in SC2, each unit is assumed to be a circle with a specific radius. Units can avoid other

units, and they can also avoid static polygonal obstacles. On top of that, the units can

not only avoid collisions, but also move towards their own goal location at the same

time.

2.4.2 ORCA Methodology

The algorithm is parametrized by a time horizon τ. In each run of this algorithm, each

unit A computes a set of half-planes (which we call ORCA half-planes) in 2D velocity

space, each half-plane being the set of velocities safe to choose to avoid collision with

some other unit or obstacle B for at least τ time. In this subsection, we briefly go over

what the algorithm does to compute these half-planes.

Each unit A considers all units and obstacles in its immediate neighbourhood (i.e.

within some radius r around it). For each neighbour B, the unit calculates the velocity
obstacle induced by the neighbour on it – that is, the set of positions in velocity space

that would make the unit collide (i.e. get within the distance of rA + rB, where rA and

rB are the units’ own radii) with that neighbour within τ time.
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Let u be the shortest vector from the relative velocity vA − vB to the velocity

obstacle’s boundary – in other words, the smallest amount of change to the realtive

velocity required to prevent a collision within τ time. Then, the slope of the line (called

the ORCA line) defining the ORCA half-plane for that neighbour is given by the slope

of the outward normal of the velocity obstacle boundary at point vA −vB +u. The line

is anchored in a point given by vA +
1
2u. This gives the unit a half-plane of possible

velocities that will avoid collision with the neighbour – note that the adjustment by
1
2u is because the unit assumes the neighbour is following the same algorithm and

will adjust by −1
2u (since from the neighbour’s perspective, everything is mirrored -

hence the negation) – the adjustment is not halved for obstacle neighbours, only for unit

neighbours.

Then, given all half-planes induced by neighbours, the algorithm solves a linear

programming problem for each unit, to find a velocity that avoids all neighbours and

is the closest to the unit’s desired velocity. If avoiding collisions completely is not

possible, the algorithm solves a different linear programming problem that minimizes

the distance the unit crosses behind the ORCA lines.

We go into more detail about how we use this algorithm in SMAClite in chapter 3.

Note that this algorithm is not equivalent to a pathfinding alorithm – when faced with a

wall, the units will often stop in front of it, they will not look for very far a way to go

around it.



Chapter 3

Project Methodology

3.1 Environment implementation method

While in the previous chapters we described technology that was already available

before SMAClite, and that we reused, in this chapter we focus on our contribution

and how we approached implementing SMAClite itself. Do note that because of the

closed-source nature of Starcraft II, we did not have access to any implementation

details of it, and came up with the algorithms contained in this chapter via trial and

error experiments, with the help of general information available on the Starcraft II

Liquipedia [29].

We decided to implement the environment in the Python programming language

[30] due to it being widely known in the machine learning community, where it is by far

the most popular one. Most of the computations within the environment are performed

using the Numpy library [31], and the rendering of the environment is handled by a

script written by us using the Pygame [32] library. Wherever applicable, we used the

default arguments of the SMAC environment, and omitted any optional ones. The

SMAClite environment uses the well-established OpenAI Gym framework [33] for

creating reinforcement learning environments.

At all steps of the implementation we made sure the action, state, observation, and

reward APIs are exactly aligned with SC2/SMAC. This also applies for individual unit

attributes, for which we consulted Liquipedia [29]. This allowed us to conduct transfer

learning experiments, such as the one we describe in section 4.3.

Even though the grid in Starcraft II allows half-square triangles, we chose for

simplicity to only allow a grid of squares as the terrain for SMAClite. We found that this

simplifying assumption does not detract from the environment’s difficulty. Internally,

13
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Figure 3.1: Visualizations of the SMAClite environment. (left) The corridor scenario

(right) The MMM2 scenario.

we collapse adjacent squares into rectangles to lower the total number of obstacles

for performance’s sake. When defining the units’ velocities or sizes, the base distance

measurement unit is the side length of a single square in the terrain grid. This is

consistent with SC2, and all scenarios available in both SMAC and SMAClite use a

map size of 32 by 32 units.

To further improve environment performance, at many points in time the units

use K-D trees as available in the Scikit-learn library [34] to find their neighbours (e.g.

finding units within sight range when generating observation vectors), as opposed to

iterating over the entire unit list. Since K-D trees only support querying in a circular

area and obstacles are always rectangles, when looking for obstacle neighbours, the

units query an R-tree from the Python package rtree [35].

3.2 Base framework

SMAClite, much like SMAC before it, is defined mostly by the various combat scenarios

available, as well as the units participating in those scenarios. As part of the SMAClite

environment we contribute a framework capable of reading both custom scenarios and

units from JSON files – this means expertise in the Starcraft II map editor is no longer

required to create new or modified challenges using the environment. This also means

that with SMAClite it is easy to tell the difference between two different unit types – to

compare between ”zergling” and ”marine”, all one needs to do is look at their respective

JSON definitions, and see what the differences are.
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All of the standard scenarios and units shipped with the environment are written

using this framework. In this section, we go over the details of what attributes are

supported for both scenarios and units. Full examples of JSON files compatible with

the framework can be found in Appendices A.1 and A.2

3.2.1 Scenario definition

Our framework accepts scenario JSON files containing a single JSON object. Each

scenario should have a name to identify it, and should specify the numbers of allied and

enemy units with the num allied units and num enemy units parameters. The units

in the scenario should be listed with the groups parameter, each group being a JSON

object with x and y parameters specifying the group’s center, a faction parameter

(ALLY or ENEMY) to specify which team the units are on, and a units parameter with an

object of unit types together with their counts. Each group will initially be laid out in

the shape of a square around their specified location. Note that these groups have no

impact beyond unit positioning – once initial unit placement is complete, neither the

agents nor the units have any information about what group they came from.

The framework supports two ways of specifying unit types. In order to use a

standard unit type, its uppcercase name should be used (e.g. ZERGLING – for a full list

of supported standard unit types, see appendix A.3). The other way to specify a unit type

is to provide a path to a JSON file with its specification. The framework also supports an

optional custom unit path parameter – if specified, this path will be prepended to all

unit types specified as a path. Note that if the .json extension is missing the framework

reattaches it automatically, so if the custom unit path is path/to and the unit type

specification is type, the framework will look for the file custom/unit/type.json

file. The framework also requires an attack point, which is typically near to the

initial positions of the allied units – this point is where the enemy units will be marching

towards throughout the scenario (see section 3.6 for details).

The framework also supports two ways of defining terrain – one way is to pick a

standard terrain present by supplying the terrain preset parameter with its uppercase

name (e.g. CORRIDOR, see appendix A.4 for full list). Terrain can also be provided in

the scenario definition file itself using the terrain argument, which should consist of

a list of strings forming a rectangular 2D array. The framework supports two types of

terrain: for walkable, and X for non-walkable. The framework also always requires

a width and height to be specified for the scenario, which should match the terrain
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dimensions – note that all scenarios adapted from SMAC have the dimensions of 32 by

32.

Finally, the framework requires some general details about units in the scenario. The

parameters ally has shields and enemy has shields specify which teams, if any,

should have shields on them, and the parameters num unit types and unit type ids

specify what IDs the agents will receive in observations for the various unit types.

The former should be a number (note that scenarios adapted from SMAC use 0 for all

scenarios where both teams are homogenous, i.e. only have one unit type each), and the

latter should be a map from unit type specifications (same as above) to numbers from 0 to

num unit types minus one. The length of the map must be equal to num unit types.

We ship several standard scenarios with this environment as separate OpenAI Gym

environments (e.g. smaclite/2s3z-v0 – see appendix A.5 for the full list of 12

scenarios we adapted from SMAC). To use a custom scenario file, one should use the

smaclite/custom-v0 Gym environment, and provide a path to the scenario file via

the map file parameter.

3.2.2 Unit definition

Each unit is assigned a specific type, with a set of different attributes impacting the

environment mechanics. Our framework supports several attributes in the JSON files

defining the various unit types, in order to allow for their easy customization.

Firstly, the framework supports several attributes defining the units’ resources,

including their maximum health and health regeneration via the hp and hp regen at-

tributes, respectively. Their shields, if any, via the shield attribute, and their maximum

and initial energy via the energy and initial energy attributes. The units’ size

can be specified by providing their diameter in the size attribute, and their speed (in

distance per second) via the speed parameter.

Then, the framework supports several attributes defining the units’ combat abilities.

Their combat type (one of DAMAGE or HEALING) defines their main role on the battle-

field, and their damage defines how strong of a hitter they are, while their armor defines

their defensive capabilities. Each unit has a specific attack range, which defines how

close (measured boundary to boundary) the unit has to get to a target in order to attack

or heal it1. Note that while a numeric value is usually expected for this attribute, the

special value of MELEE is also accepted to signify that the unit should have the standard

1Note that this is different from the agent targeting range mentioned in section 2.3 – that range only
affects the agents’ observations, while this one actually governs when an attack can happen.
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melee range, i.e. only attack from up close. Some units can deal damage multiple

times per attack – this can be achieved using the attacks attribute (e.g. 2 for attacking

twice at once), and after attacking, each unit has to wait their specific cooldown before

attacking again. Each unit type should also define a minimum scan range, which will

govern how far the units will look when searching for targets.

In SMAClite, each unit resides in a specific plane, with three currently supported:

GROUND, AIR, and COLOSSUS. When moving, the units only avoid collisions with units

in the same plane as them, and only ground units are affected by static obstacles. All

of the units in SMAClite can only target units which reside in the planes listed in their

valid targets – for example, if AIR is not in this list for some unit, then it can never

attack airborne units. But note that, regardless of their valid targets, all units can

target units int he COLOSSUS plane.

In order to support making certain unit types stronger against specific other types, the

framework also supports a system of unit attributes (e.g. BIOLOGICAL, see appendix

A.6 for a full list of available attributes) and attribute-relative bonuses, defined as a

map from attribute to bonus value. For example, if a unit type has a bonus of 20 against

ARMORED units, it will deal 20 bonus damage with each attack against units with that

attribute.

Finally, the framework supports several different attack types for units, defined

by the targeter and targeter kwargs attributes. The most common attack type is

STANDARD, which simply has the unit attacking one target at a time. The other attack

types are only used by one standard unit each, but can easily be reused for custom

unit types. The KAMIKAZE attack type has the unit explode when attacking, dealing

damage in a circle with a specified radius around itself and dying the process. The

LASER BEAM type fires a laser in a line perpendicular to the line between the attacker

and their target – more specifically, the laser line is a rectangle with a specified width

and height. Lastly, the HEAL attack type is used by healer units.

3.3 Unit command types

At any given point in time, each unit in the environment is executing one of several types

of commands. SMAClite supports five different command types, with the first four

being exactly equivalent to the four action types available to the agents, as described in

section 2.3.

We introduce one more command type that is unavailable to agents but is key to the
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AI opponent’s behavior, called attack move – this command orders the units to march

toward a specified location, attacking any units encountered along the way, and then

guard the location once it is reached. We based our implementation of attack-moving

on the ”Automatic targeting” article on the Starcraft II Liquipedia [29], but made a few

judgement calls based on what yielded the most desirable behaviour, wherever their

information was unclear or unavailable.

3.4 Game loop

Each environment step starts with the agents’ units being assigned commands corre-

sponding to the actions chosen by the agents. Once that happens, we simulate eight

game steps, and the reward returned from the environment step is the sum of the rewards

earned within these game steps. Each game step is considered to last 1
16 th of a second

for the purpose of calculating velocity, cooldowns, etc. – that does not mean this is its

actual duration, as in fact our environment can run much faster than real-time (see 4.4.1

for details).

Each game step consists of several phases. These phases were developed by us

and we have no information about whether the game steps inside Starcraft II follow

any sort of similar order – this structure was simply what yielded the most reasonable

game ruleset that is resembles Starcraft II. Before the next phase can begin, all units

must execute the logic for the previous phase. This is necessary to ensure the units’

perceptions of other units (note: unrelated to the agents’ observations) remain consistent

throughout the execution of the game step.

3.4.1 Target clean-up

First of all, each unit might lose the target it was attacking or healing in the previous

game-step, according to command-specific logic. It is necessary for all units to execute

this logic before proceeding with declaring their preferred velocity for this game step

because other units might access the target information when computing their own

preferred velocity.

Units with the noop, stop, and move commands immediately lose any target they

had, since these are non-combat commands. Units with the target command acquire

the target dictated by their command, or retain it they are already targeting it. With the

attack move command, the units consider several factors. They always lose a dead
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target and they never lose a target who attacked them in the last game step. Otherwise,

they lose their target if it is outside of their attack range.

3.4.2 Velocity preparation

In this phase all units declare their preferred velocity for this game step. It is necessary

that they all do this before proceeding with velocity adjustment via the ORCA algorithm,

because units can perceive each other’s preferred velocity and make collision avoidance

decisions based on that information.

In the case of noop and stop commands, the preferred velocity of the units is always

0. In the case of the move command, if the unit’s maximum velocity is vmax, its current

position is x, and the position where it wants to move is y, where x ̸= y, then the unit

always declares that its preferred velocity is (y−x) vmax
||y−x|| . If x = y, then the preferred

velocity is instead 0. Put simply, the unit always wishes to move in a straight line

towards its destination – this is different to Starcraft II’s engine which has a built-in

pathfinding algorithm based on the A* algorithm [36] – but we decided to omit it, since

it only matters in one of the many scenarios offered by SMAC (2c vs 64zg).

If the unit’s command is target, the unit considers its distance from the target

unit. Let the unit’s attack range be dmax, its radius rA, and its target radius rB, and let

the distance between it and the target be defined as d(A,B). Then, in the case where

d(A,B) > rA + dmax + rB, the unit declares it is moving in a straight line towards its

target, and proceeds as with a move command. Otherwise, it declares it is attacking or

healing, and its preferred velocity is 0.

Finally, if the unit’s command is attack move, the unit first finds the valid targets

within its scan range. It is important to note that if the unit is a damage-dealer, it

considers any enemy healers priority targets, and all other enemy units as non-priority

targets – if the unit still has a target after the target clean-up phase, the only way it will

switch targets at this point is if its current target is not a priority target, and there is

a priority target within its scan range. If it does not have a target, or needs to switch,

it picks the closest target with the highest available priority among the valid targets.

The process is slightly different with healers, who consider valid targets any non-healer

units in their team who are below full health, or who are attacking another unit. The

healer unit picks as its target the lowest-health unit among its valid targets. After the

target selection process finishes, the unit proceeds as with a target command if it has

a target, and as with a move command toward its attack-move destination position if
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it does not. Note that healers will adjust their maximum velocity for any given game

step to match the slowest allied unit within their scan range – we implemented this

behaviour in order to stop them getting in front of their army if they are the fastest units.

There are a few intentional changes from SC2 in this phase – therein, it is not true

that healers can target any non-healers, and can never target other healers or themselves.

This is only true with the limited set of units present in SMAC, and we felt it makes for

a nice simplification of the SC2 ruleset that does not change anything in SMAC. It is

also not true that damage-dealers consider any healers as priority targets in SC2 – they

only do in SMAC due to the modifications made to the map files by its authors – again,

we felt this is a nice simplification aligned with SMAC, but not with SC2.

3.4.3 Velocity adjustment

Each unit A uses the ORCA algorithm to determine its actual velocity that avoids

collisions, taking into account its own preferred velocity, as well as its neighbour units

and obstacles. For the purpose of collision avoidance, the unit considers its neighbours

all units within the radius of (rA + rmax)τ of itself, where rmax is the maximum radius of

any unit in the scenario and τ is the time horizon; and all obstacles within the radius

of rA + τvA,max of itself. In SMAClite, we always use τ = 1, i.e. the units want to

guarantee avoiding collisions for 1 second, or 16 game steps. The ORCA algorithm

returns for each unit its actual velocity, given its preferred velocity. For details on our

implementation of the ORCA algorithm, refer to section 3.5.

3.4.4 Game step execution

This is the final phase of the game step, and because order matters here (a unit might

be eliminated before it gets to execute its command), the units execute their respective

logic for this phase in random order, with the order being re-randomized in each game

step. Note that we do not have any data about whether Starcraft II also randomizes

game step execution order, this simply felt like a decent compromise between fairness

and simplicty.

Each unit, regardless of its command type, begins this phase by performing several

standard updates. It updates its position according to its actual velocity computed in the

previous phase (i.e. xnew = x+ vactual
16 , since velocity is always defined in distance per

second), it reduces its cooldown if applicable (i.e. if it is greater than 0, it gets reduced

by 1
16 th of a second), and it regenerates health, energy, and/or shields, if applicable. It
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then proceeds with command-specific logic.

The only case where any command-specific logic is performed at this point is if

the unit’s command is target, or attack move with a non-empty target, and the unit

declared during the velocity preparation phase that it is attacking or healing, and its

current cooldown is 0 – in all other cases the unit’s game step logic ends here. In the

single actionable case, it attacks or heals its target.

Damage from attacks is dealt first to the enemy shields, then to the enemy health,

with any damage dealt to the target’s health being reduced by its armor. If the unit’s

attacks attribute is greater than 1, then it deals damage multiple times in a row during

this step. If the unit did attack, its cooldown is then set to its maximum value, defined by

the unit’s type. Healing units heal their target at a rate of 9 health per second, spending
1
3 of an energy point per health healed.

Do note that units might attack or heal units that are technically outside of their range

at this point, because attack/heal declaration happened during the velocity preparation

phase, and the target might have moved away slightly since then. This is intentional

and is meant to prevent endless chases when the units’ velocities are similar. Again, we

do not have data on whether the Starcraft II engine features any similar simplifications,

but this rule works well for SMAClite.

In addition, there is an intentional change from SC2 in here as well, because for

simplicity we do not simulate attack animations or attack projectiles – every attack

happens instantly in the timestep when the unit declares it is attacking. This causes

some small discrepancies from SC2, but we believe the margin of error is acceptable.

3.5 Custom ORCA implementation

To facilitate installation simplicity, we rewrote the RVO2 library – the official imple-

mentation of ORCA in the C++ programming language from Berg et al. [28] – into

Numpy, and we ship this module together with SMAClite. Because Starcraft II uses

compiled (and, we assume, highly optimized) C/C++ code, and Python code can be

quite slow compared to it, we ran into peformance issues early in the developoment

of SMAClite. To address this issue, we also make available an addon for SMAClite,

which uses the original C++ RVO2 library verbatim, using Python bindings written

in the Cython [37] extension. The Python bindings were originally made available by

Stüvel [38], though we implemented several modifications to suit our use-case – these

modifications are also present in the Numpy version of RVO2.
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The original RVO2 library has no way to remove units one by one, nor remove all

units at once. These are key features for us, as we need to adjust the collision avoidance

unit list whenever a unit dies or whenever we restart the environment. We added both of

these features into RVO2 – we assume dead units disappear from the battlefield as soon

as they are eliminated, so we do not want other units avoiding collisions with them.

The second set of adjustments considers static units – the original ORCA algorithm

assumes fully cooperative units who will go out of their way to make the passage easier

for other units. Our version, on the other hand, assumes that if a unit A is static (i.e.

||vA|| = 0), it will never adjust its velocity. This makes it possible to surround other

units and/or block their path, which is a valid strategy in Starcraft II. In the original

implementation of ORCA, the blocking units would simply be ”pushed” away. Note

that to make up for this, any moving units will adjust their velocity by u instead of
1
2u (see subsection 2.4.2 for definition of u), when avoiding static units – this ensures

moving units will not walk into static units.

Because the addon requires building and installing C++ files via CMake, which

could be problematic on some systems, we chose to make this RVO2 fork available

as an optional dependency, for users who are willing to go through a more difficult

installation process in order to boost environment performance. We call this version

SMAClite plus. Note that, because of differences in finding neighbours, unit be-

haviours will not be exactly the same between the two versions, but should remain

functionally indistinguishable. If this addon is in use, custom K-D trees implemented in

C++ for RVO2 are used for finding unit and obstacle neighbours for collision avoidance

purposes, instead of Scikit-learn K-D trees or rtree R-trees. After it is installed, the

addon can be enabled by setting the parameter use cpp rvo2 to True when initialising

the environment. Any attempt to set this argument to True without the addon installed

will result in an error.

3.6 Opponent AI behaviour

The authors of SMAC [5] claim the opponent team is controlled by Starcraft II’s built-in

AI on the very difficult level. Because the enemy units’ behaviours seemed very simple,

we had our doubts about their strategic ability when watching combat inside the SMAC

environment. For this reason, we performed two experiments:

1. First, we toggled the AI level inside SMAC across the various difficulty levels

available (including the ”cheating” levels), while keeping the random number
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generator seed constant. We then put the opponent AI against agents who pick

randomly from the available actions. We saw no difference at all in the rewards

obtained by the random agents between difficulty levels – they were exactly equal.

2. Then, going one step further, we removed the AI opponent from the game,

making the enemy units not controlled by any player. This did not change the
rewards either.

We performed these experiments on the MMM2, 2c vs 64zg, and corridor SMAC

scenarios.

Based on these results, we are reasonably certain the AI never issues any orders

to the enemy units in SMAC. The only order given to them is inside a script in each

SMAC map file, which tells them to attack-move towards a specific point, usually where

allied units initially appear. Following these results, we did not implement any custom

opponent AI. All we do is, upon map initialization, set the enemy units’ command to

attack move towards the attack point specified in the map scenario file. The enemy

units’ command never changes throughout the encounter.



Chapter 4

Experiments

In this section we describe the results of various experiments we performed in our

environment. In all of the experiments, we used the scenarios listed in table 4.1. More

specifically, we use all of the scenarios used by Papoudakis et al. [4] in their paper, with

the addition of bane vs bane, which we included to feature a wider selection of unit

types.

4.1 Agent learning curves

We trained all of the algorithms listed in section 2.2 on the selected scenarios. Each train-

ing was run for 4 million steps, and each training was repeated using 5 different random

number generator seeds. All of the trainings were performed on the SMAClite plus

version of the environment, and were performed solely using CPUs, each training using

a single CPU core. The trainings were run on various nodes on a cloud cluster, most of

then using Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00GHz, and all others used CPUs of

comparable computational capacity. Due to technical constraints, all trainings were un-

der a strict 48-hour time limit. For all of the algorithms, we used hyperparameters listed

as the best found for SMAC in the benchmark paper [4]. For the episodic algorithms

we used a buffer size of 5000, and for the parallel algorithms we used a buffer size of

10. We used the ePyMARL framework to run all of the trainings.

Some minor caveats need to be mentioned with regards to the learning curves.

Firstly, the bane vs bane scenario is by far the slowest (as evidenced by subsection

4.4.1), so we reduced the required timestep to 1 million for this scenario only. In

addition, we found the MADDPG algorithm extremely slow during training, and so it

never reached the required timesteps in two scenarios (MMM2 and bane vs bane) under

24
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the time limit, so we omit those two curves in our figure.

The resulting graphs of mean reward over training time (also known as learning

curves) can be found in figure 4.1. In the remainder of this section, we compare the

learning curves to those reported for SMAC in the benchmark paper.

First of all, many algorithms easily solve the 2s vs 1sc scenario in SMAC, quickly

reaching the maximum reward of 20, while in SMAClite the best performer (QMIX)

only reaches a mean reward of about 15. We theorize that this due to the fact that

SMAClite does not simulate attack animations, and originally in Starcraft II the spine

crawler has a very long attack animation (0.238 seconds versus 0.1193 seconds for the

stalkers), so in SC2 it is much easier to dodge the spine crawler’s attack in the last

possible moment. Though the difference is less noticeable there, a similar situation

occurs in 3s vs 5z, and we believe it is for the same reason. Put simply, we believe

kiting – alternating between running away and attacking without getting hit – is much

more difficult in SMAClite than in SC2 because of the instant attacks.

Another major difference between the SMAC and SMAClite learning curves is in

the MMM2 environment – in the case of SMAClite, three algorithms (MAPPO, VDN and

QMIX) seem to have mastered the environment, with maximal rewards almost reaching

25 (for details about how the algorithm achieves this see the next section), while in

SMAC the best performing algorithms barely reach a reward of 17.5 (but note that they

are the same three algorithms, which shows the scenarios are still somewhat equivalent).

Our hypothesis is that this is due to a potential bug in the SMAC environment code.

When calculating rewards, SMAC simply subtracts enemy units’ new health values

from their old health values, so any healing done by the enemies results in a negative

reward being incurred by the agents, even though they never did anything wrong. We

believe that this, combined with the fact that rewards should be gained for dealing

damage, could confuse the agents during training. Judging by the wording in the SMAC

paper [5] we do not believe this is intentional, so the same behaviour is not present in

SMAClite, where we explicitly define the reward as the sum of health points lost by the

enemies due to attacks, and we do not penalize the agents for enemies healing.

Despite these few issues, we do observe that the overall shape of the training curves

is comparable in all scenarios, some of them differ only in maximum reward reached.

We believe that this is promising evidence pointing towards the environments being

equivalent as far as learning is considered.
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Name Allied Units Enemy Units Description

2s vs 1sc 2 1 Two stalkers – powerful but fragile

ranged units – face off against one

spine crawler – very strong unit with

no movement capabilities. The stalk-

ers need to abuse the spine crawler’s

immobility to bring its health down.

3s5z 8 8 A symmetrical map with each team

having three stalkers and five zealots

– melee units that deal less damage

but can take a lot of hits before dy-

ing.

MMM2 10 12 Each team has some marines – frag-

ile ranged units that attack quickly,

some marauders – more durable

units that have stronger attacks, but

can’t hit flying units, and one medi-

vac – a flying healer unit.

corridor 6 24 The allied team only has 6 zealots

to hold off 24 zeglings – extremely

fragile but very quick units with po-

tential to overwhelm unprepared en-

emies with numbers and surround

them.

3s vs 5z 3 5 Three stalkers need to keep the quick

zealots at bay while outnumbered,

using their range to their advantage.

bane vs bane 24 24 Each team has some zerglings and

some explosive kamikaze banelings,

each of which can easily take out

several zegrlings with one explo-

sion.

Table 4.1: Combat scenarios used in experiments described in this section.
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Figure 4.1: Test-time rewards received by agents trained using the different algorithms

over time during training. The graphs show the mean value, as well as the 95% confi-

dence interval, from 5 trainings differing by random number generator seed.
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4.2 Behaviours observed in agents

In this section we select one model for each scenario, and we describe the strategies

employed by the agents to achieve high reward values, in order to demonstrate to

the readers the complexity of strategies required in SMAClite. Note that the below

descriptions are simply our interpretations of the behaviours demonstrated by the agents

in the environment, informed by our knowledge of the game gained both by playing

Starcraft II and working on SMAClite.

When making our selection, we wanted to showcase each of the algorithms, and

each of them in a scenario where it did well – note that this means we might not use

the best performer in all of the scenarios, but all of them are at least above average.

However, because there are 9 algorithms and only 6 scenarios and because not all

algorithms performed well, we decided to omit COMA, MADDPG, and IPPO, which

were the overall weakest performers. In each case we used the latest available (i.e.

highest amount of training timesteps) checkpoint of agent parameters.

2s vs 1sc – QMIX – Mean test reward: 16.22 – one of the stalkers is the ”baiter”

gets the spine crawler’s attention and they both attack until the baiter’s health

drops down to a very low value, at which point it backs out and lets the spine

crawler target the other stalker. They then both hit the spine crawler until they

die, which sometimes results in a victory and sometimes in defeat depending on

the random attack order.

3s5z – VDN – Mean test reward: 20 – the stalkers and the zealots both focus on the

enemy stalkers first, which deal more damage per second than the enemy zealots.

The allied zealots move slightly north and the allied stalkers move slightly south,

both to direct the attention of enemy stalkers (whose initial position is on the

north side of the enemy army) to the allied zealots, who can take more hits, and

also to allow allied stalkers plenty of room to maneuver while attacking. Also

worth noting is the fact that the allied units are quite good at moving away right

as their health drops to a dangerously low level, letting other nearby allies take

the aggression.

MMM2 – MAPPO – Mean test reward: 24.63 – all allied damage-dealers focus on

the enemy marauders first, because they are the heavier hitters, while the ally

medivac hides behind others as soon as it gets low, since it is a priority target and

would quickly be gunned down. What is interesting here is that the allied units
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leave the enemy medivac alive and kill it last, abusing the fact that enemy units

getting healed result in a higher reward due to the total damage dealt being higher

– this is how the agents surpass the optimal return of 20 and reach values close to

25. They even stop hitting enemy damage-dealers and let them get healed, since

the medivac cannot heal itself.

corridor – MAA2C – Mean test reward: 20.25 – the zealots fan out and form

a horizontal line against the zerglings, blocking them making it harder for the

zerglings to surround them. This causes the zerglings to crowd around the front

of the zealot line, reducing the total amount of damage the zealots take over time.

3s vs 5z – IQL – Mean test reward: 18.1 – the stalkers use the intended optimal

strategy of kiting the zealots around the map. The lowest-health stalker always

makes sure to stand behind the other two when attacking, in order to avoid dying.

The stalkers do seem to get ”lazy” with their kiting when the number of remaining

zealots becomes low, probably because there is no penalty for dying, and it is

easier to just stand and attack when the risk of death is low.

bane vs bane – IA2C – Mean test reward: 19.14 – the zerglings run away to the

west to avoid the enemy banelings’ explosions, while the ally banelings charge

forward and explode when they become surrounded by enemy units. The enemy

zerglings and banelings quickly die to multiple explosions. If any enemies remain

after the allied banelings’ explosions, the allied zerglings come out of hiding and

attack.

4.3 Cross-environment 0-shot performance

In order to verify whether our environment does in fact maintain the same features

as SMAC, we performed 0-shot transfer learning experiments on each scenario (i.e.

without any retraining on the environment we transfer to). We used the same models

as in the previous experiment – to be specific, we first used their parameters from the

first time the model was saved (at the very beginning of the training process), and then

their parameters from the last time the model was saved (at the very end of the training

process), and then compared the mean test-time rewards.

We note that the mean reward obtained has increased in all of the scenarios, with

some exhibiting significant improvements such as doubling or tripling of the mean
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Scenario algorithm early reward late reward late reward on SMAClite

2s vs 1sc QMIX 0 11.4 16.22

3s5z VDN 3.09 8.96 20

MMM2 MAPPO 1.87 6.70 24.63

corridor MAA2C 3.35 4.48 20.25

3s vs 5z IQL 3.13 9.33 18.1

bane vs bane IA2C 18.97 19.84 19.14

Table 4.2: Mean test rewards achieved by agents trained on SMAClite when put inside

the original SMAC environment, achieved using the parameters from the first time they

were saved during training, and from the last time they were saved during training. Late

reward on SMAClite also included for reference.

reward. A noteworthy example is the bane vs bane scenario, where even the early

version of the agents got close to the optimal return of 20, but was still improved upon

by the later version. Because all of the scenarios exhibited improved rewards upon

training in SMAClite, we believe there is evidence to support the two environments

requiring similar sets of skills, and that transfer learning from one to the other is a viable

training strategy.

4.4 Environment Performance Benchmark

In this section, we consider the performance of the environments themselves, to confirm

or deny whether SMAClite is indeed cheaper to run than SMAC. To obtain the data in

this benchmark, we ran each scenario 20 times with agents picking randomly among

the available actions. All of the below experiments were run were on a computer with

an AMD Ryzen 3700X CPU.

4.4.1 Environment speed

In table 4.3 one can find the time each environment took per timestep (excluding

logic not belonging to the environment, like action selection). We notice that the pure

Python code is indeed slower than the original SMAC environment, but the environment

becomes much faster when using the C++ RVO2 addon.

Note that these timings correspond to running 1 environment step, which consists
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Scenario SMAC SMAClite Change Factor SMAClite plus Change Factor

2s vs 1sc 0.004 0.007 175% 0.003 75%

3s5z 0.013 0.018 138% 0.007 54%

MMM2 0.017 0.028 164% 0.010 59%

corridor 0.014 0.092 657% 0.010 71%

3s vs 5z 0.006 0.013 216% 0.005 83%

bane vs bane 0.049 0.086 176% 0.024 49%

Table 4.3: Avereage seconds per timestep on the SMAC scenarios we used for our

trainings. Data was obtained by running the scenario 20 times against random agents.

of 8 game steps in sequence, together with any environment-only logic (e.g. calculating

rewards and determining observations). If we ever were to run experiments against

human players (assuming SMAClite got some human control extension), we would

want the environment to be capable of running in real time. Both in SC2 and SMAClite,

each game step is considered to last 1
16 seconds, and most human players play SC2 at

the ”faster” in-game speed, which corresponds to a 40% speed-up. Therefore, in order

for the environments to run in real-time, they can afford to use 8
16∗1.4 ≃ 0.357 seconds

per environment step. Thus, all versions of the environment are more than capable of

running all tested scenarios in real-time – the advantage of SMAClite plus becomes

the most obvious when running lengthy trainings which require many executions of the

environment.

4.4.2 Environment memory usage

While running the experiments from the previous section, we also measured the amount

of memory used by each environment. This did not vary a lot by scenario, and

oscillated around 600 MB for the SMAC environment, and around 100 MB for the

SMAClite/SMAClite plus environments. Therefore, our lightweight version of the

environment requires six times less memory than the original SMAC environment to

run.
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Conclusions

5.1 Future Work

We believe the SMAClite engine and framework are both very much open to extensions.

Thanks to the fact that the environment is no longer bound by the Starcraft II dependency,

developers could introduce game mechanics unrelated to Starcraft II, and could also go

beyond the game’s technical limitations. One could implement new unit types unseen

in SC2 with new attack types or abilities, or easily create countless intricate puzzles for

the agents to solve using the scenario framework.

It is also possible to treat SMAClite strictly as an extension of SMAC, and work

towards making is as close to SMAC as possible, while maintaining the performance im-

provements it brings. This would likely mean focusing on transfer learning experiments

such as the one in section 4.3, and eliminating various differences present currently be-

tween the environments. One example might be attack projectile/animation simulation,

since that is one of the major differences between the two, and caused discrepancies in

2s vs 1sc, as well as in 3s vs 5z, during our experiments.

One could also work on improving the modified ORCA algorithm’s combat capabil-

ities – as evidenced by the corridor scenario, the SC2 zerglings were much better at

surrounding the zealot wall as performed by our MAA2C agents than the SMAClite

zerglings. This probably stems from the fact that RVO2 is mostly a general-purpose col-

lision avoidance algorithm, while SC2’s algorithm was handwritten for the best combat

performance possible. Another feature idea we could use from SC2 is a pathfinding

algorithm, since running in a straight line becomes a problem very soon when terrain

becomes any more complicated than the terrain in our experimental scenarios.

32
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5.2 Summary

In this paper, we presented a Multi-Agent Reinforcement Learning environment based

on the Starcraft Multi-Agent Challenge [5]. We implemented it from the ground up

using the Python programming language, mostly using the Numpy and Scikit-learn

libraries. A major feature of the environment, other than complete decoupling from

the heavy dependence on the Starcraft II game, is a framework capable of reading

custom scenario and unit files defined in the widely used JSON format, allowing for

easy interpretation and modification of the various scenarios and units present in the

environment, as well as equally easy introduction of new ones.

We also introduce and make available two versions of the RVO2 library by Berg

et al. [28] – one implemented using Numpy for maximum convenience, and one being

a modification of the original C++ library optimized for performance. Both versions

are compatible with our environment out of the box. Depending on priorities, each of

them can be used interchangeably, and both offer real-time collision avoidance for all

of the units in the environment.

We trained 9 different MARL algorithms in our environment using a modified

version of the ePyMARL framework, which we also make available. We presented

the learning curves of these algorithms on 6 different SMAClite scenarios, comparing

these results to corresponding SMAC results in a benchmark paper, and noting that all

of the learning curves exhibit similar properties to the ones from the original SMAC

environment. We then offered verbal descriptions of the strategies employed by the

MARL agents on each scenario to demonstrate the depth of strategy possible to achieve

in SMAClite. We also performed a transfer learning experiment where we showed

training agents on SMAClite brings improved performance in SMAC in all scenarios

tested.

Following that, we ran environment performance experiments to verify that SMAClite

is indeed a cheaper environment to run than SMAC. We observed that SMAClite with

its C++ RVO2 variant was faster than SMAC on all scenarios tested, and both versions

of the SMAClite environment were using six times less memory than SMAC on all

scenarios tested.

We believe that the SMAClite environment is equally as challenging as SMAC,

and can serve as equally good of a standard MARL benchmark. It is our hope that the

improved accessibility and performance that SMAClite offers will be viewed as strong

arguments for making it the benchmark of choice for MARL algorithm evaluation.
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Appendix A

SMAClite framework examples

A.1 Example of a valid scenario file

The following is an example custom scenario similar to the built-in scenario 10m vs 11m,

but using custom units.

{

"name": "10m_vs_11m",

"custom_unit_path": "smaclite/env/units/smaclite_units",

"num_allied_units": 10,

"num_enemy_units": 11,

"groups": [

{

"x": 9,

"y": 16,

"faction": "ALLY",

"units": {

"example_custom_unit": 10

}

},

{

"x": 23,

"y": 16,

"faction": "ENEMY",

"units": {

40
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"example_custom_unit": 11

}

}

],

"attack_point": [9, 16],

"terrain_preset": "NARROW",

"num_unit_types": 0,

"ally_has_shields": false,

"enemy_has_shields": false

}

A.2 Exmaple of a valid unit file

The following is a custom unit similar to the built-in MARINE unit, but with a much

larger (effectively global) scan range

{

"hp": 45,

"armor": 0,

"damage": 6,

"cooldown": 3,

"speed": 3.15,

"attack_range": 3,

"size": 3,

"attributes": ["LIGHT", "BIOLOGICAL"],

"minimum_scan_range": 100,

"valid_targets": ["GROUND", "AIR"]

}

A.3 Standard unit types

The following standard unit types are supported: ZERGLING, BANELING, SPINE CRAWLER,

MARINE, MEDIVAC, MARAUDER, ZEALOT, STALKER, COLOSSUS.
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A.4 Terrain presets

The following terrain presets are supported: SIMPLE, CHECKERBOARD, NARROW, RAVINE,

OCTAGON, CORRIDOR, PENTAGON, ALL GREEN.

A.5 Standard scenarios

The following standard scenarios are supported: 10m vs 11m, 27m vs 30m, 3s5z vs 3s6z,

2s3z, 3s5z, MMM, MMM2, 2c vs 64zg, bane vs bane, corridor, 2s vs 1sc, 3s vs 5z.

A.6 Unit attributes

The following unit attributes are supported: LIGHT, ARMORED, MASSIVE, BIOLOGICAL,

MECHANICAL, PSIONIC, STRUCTURE, HEROIC.
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