
Revisiting Discrete Gradient Estimation in

MADDPG

Callum Tilbury
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2022

Abstract

MADDPG is an algorithm in Multi-Agent Reinforcement Learning that extends the

popular single-agent method, DDPG, to multi-agent scenarios. Importantly, DDPG is

an algorithm designed for continuous-action spaces, where the gradient of the state-

action value function exists. For this algorithm to work in discrete-action spaces, then,

discrete gradient estimation must be performed. For MADDPG, this is done using the

Gumbel-Softmax estimator—a reparameterisation which relaxes a discrete distribution

into a somewhat-similar continuous one. This method, however, is statistically biased,

and some authors believe that this bias makes MADDPG perform poorly in grid-world

situations, where the action-space is discrete. Fortunately, many alternatives to the

Gumbel-Softmax exist, boasting a wide range of properties. This project details a

handful of these alternatives, sourced from the literature, and integrates them into

MADDPG for discrete grid-world scenarios. The corresponding impact on various

performance metrics is then measured and analysed. It is found that one of the proposed

estimators performs significantly better than the original Gumbel-Softmax in several

tasks, both in the returns achieved and the time it takes for the training to converge.

Based on these results, it is argued that a rich field of future work exists.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Callum Tilbury)

ii

Acknowledgements

And present gratitude

Insures the future’s good,

And for the things I see

I trust the things to be;

— John Greenleaf Whittier

For a year such as this, I owe innumerable thanks. Some days I can hardly believe

my fortune in such special friends, such an interesting course, and such a beautiful city.

My silly words feel mostly futile, but ought to be shared nonetheless:

To the Skye Foundation—

Thank you for showering me with generosity and unlocking an unequivocally life-

changing experience.

To Dr Stefano Albrecht—

Thank you for your guiding wisdom in this project.

To Filippos Christianos—

Thank you for your mentorship and advice, and for being so willing to share it.

To Claude and Arnu, from InstaDeep—

Thank you for the occasional consultation and excitement about this project. I can’t

wait for next year!

To my gorgeous friends in Edinburgh—

Thank you for being in community with me. Thank you for the meals, the laughs, and

the love. I’ll see you all in Cape Town!

Finally, to my ever-supportive cheerleaders back home:

my wonderful friends and my loving family—

Thank you for being on this journey with me, albeit from afar. I miss you all dearly.

iii

Table of Contents

Acronyms & Initialisms v

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3
1.3 Structure . 3

2 Foundations 4
2.1 Primer on Gradient Estimation . 4
2.2 Reinforcement Learning Background 7
2.3 Deterministic Policy Gradient Methods 9
2.4 MADDPG Implementation Details 10

3 Discrete Gradient Estimation 14
3.1 The Gumbel-Softmax . 14
3.2 Available Alternatives . 16
3.3 Chosen Alternatives . 18

4 Experimental Methods 23
4.1 Environments . 23
4.2 Evaluation Metrics . 25
4.3 Training Details . 27

5 Experimental Results & Discussion 29
5.1 Returns: Maximum & Average . 29
5.2 Compute Time . 35
5.3 Gradient Variance . 37

6 Conclusion 38
6.1 Summary . 38
6.2 Future Work . 39

Bibliography 40

iv

Acronyms & Initialisms

CTDE Centralised Training, Decentralised Execution

DDPG Deep Deterministic Policy Gradient

DPG Deterministic Policy Gradient

DPGT Deterministic Policy Gradient Theorem

GRMC Gumbel-Rao Monte Carlo

GS Gumbel-Softmax

GST Gapped Straight-Through

i.i.d. independent and identically distributed

LBF Level-Based Foraging

MADDPG Multi-Agent Deep Deterministic Policy Gradient

MARL Multi-Agent Reinforcement Learning

MPE Multi-Agent Particle Environment

POSG Partially-Observable Stochastic Game

RL Reinforcement Learning

RWARE Robot Warehouse

SPGT Stochastic Policy Gradient Theorem

STGS Straight-Through Gumbel-Softmax

TAGS Temperature-Annealed Gumbel-Softmax

v

Chapter 1

Introduction

1.1 Motivation

In recent years, interest in the field of Reinforcement Learning (RL) has grown markedly.

Though in existence for many decades, the discipline’s recent integration with deep

learning—often called deep RL—has catalysed a renewed hope for its capabilities.

Such excitement is certainly warranted: deep RL algorithms have been excelling

consistently on a wide range of challenges, many of which seemed unthinkable in the

past. Commonly cited feats include conquering many popular games, both modern and

ancient [Vinyals et al., 2019, Berner et al., 2019, Wurman et al., 2022, Silver et al.,

2016, Schrittwieser et al., 2020].

An important type of problem in RL is where not only a single agent acts, but

multiple agents. These agents act together, either adversarially, co-operatively, or some

combination thereof. Broadly, this paradigm is termed Multi-Agent Reinforcement

Learning (MARL). Algorithms developed for single-agent contexts can be applied for

multiple agents, where each agent simply acts independently, but performance here has

been shown to be limited [Papoudakis et al., 2021]. Problems with such an approach

include agents perceiving the environment as non-stationary [Papoudakis et al., 2019],

and the so-called ‘curse of dimensionality’ [Du and Ding, 2021]. As an alternative,

researchers have developed MARL-specific algorithms—either by extending extant

single-agent approaches to multi-agent scenarios, or by developing new algorithms

altogether.

One of the earliest approaches proposed for deep MARL—that is, MARL with the

integration of deep learning—was the Multi-Agent Deep Deterministic Policy Gradient

(MADDPG) algorithm, by Lowe et al. [2017]. In this work, the authors extended

1

Chapter 1. Introduction 2

the single-agent Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2016]

method, which is itself an extension of the Deterministic Policy Gradient (DPG) [Silver

et al., 2014] method, to multi-agent scenarios. Crucially, DPG and its descendants are

designed to work only with continuous-action spaces—where each action comes from

an uncountable, continuous domain, e.g. the torque applied to motor. The alternative

is a discrete-action space, which has countable set of possibilities, e.g. choosing to

go up or down. The restriction to continuous domains is because the gradient of the

‘state-action’ value function (which indicates how valuable it is to execute a given action

from a given state) taken with respect to the action, must exist. This is not the case for a

discrete-action context.

Despite this, it seems that the authors of MADDPG desired a universal algorithm,

one which could be applied to both continuous and discrete problems, while still build-

ing on the foundations of DPG. To enable MADDPG to work in discrete situations,

then, a mathematical trick was applied: the Gumbel-Softmax (GS) reparameterisa-

tion. Essentially, this trick ‘relaxes’ the discrete, non-differentiable action-space into a

somewhat-equivalent, continuous space—thus allowing an approximation of the gradi-

ent to exist. We term this a ‘discrete gradient estimation’ method. Relaxing the space in

this way, however, introduces statistical bias into the gradient computation.

Recently, a benchmarking paper by Papoudakis et al. [2021] found that MADDPG

achieved decent performance in certain MARL environments, but performed markedly

worse in grid-world situations—where the action space is discrete. The authors sug-

gested that this degradation of performance may be due to the aforementioned bias

introduced by the GS.

Interestingly, the GS—and the field of discrete gradient estimation, more broadly—

appears in a host of contexts outside of MARL. As a result, a wealth of alternatives

has been proposed for the GS, many of which focus on lowering the bias it introduces.

As of yet, though, it seems that not many of these techniques have been integrated

into MARL, and certainly not into MADDPG. Doing so, however, may be a fruitful

endeavour, and would provide a way to explore the conjecture made by Papoudakis

et al. [2021]. This then motivates our current investigation.

Chapter 1. Introduction 3

1.2 Goals

With this context in mind, we now encapsulate our enquiry in a question:

Can alternative discrete gradient estimation methods improve the performance of

MADDPG in discrete-action space environments, when compared to the original

Gumbel-Softmax reparameterisation?

In answering this question, we hope to make three broad contributions:

• A synthesis of the literature, focusing on a set of available discrete gradient

estimation methods which could be integrated into MADDPG.

• An implementation of a handful of such methods into MADDPG, with an inves-

tigation into whether improvements occur when these methods are applied in

discrete-action spaces.

• If successful, a cursory analysis into why such improvements occur.

1.3 Structure

This report proceeds as follows. Chapter 2 provides the necessary foundations of the

project, broadly covering the important background information—here, we discuss

the topics of gradient estimation and RL, and then we synthesise them: looking at

how the former appears in the latter. Chapter 3 dives deeply into discrete gradient

estimation, looking firstly at the GS method, and then the proposed alternatives from the

literature. A few proposals are selected for further investigation, and the theory behind

these approaches is presented in more detail. Chapter 4 proceeds with the experimental

methodology for the project, detailing the environments used for evaluation, and how

‘performance’ is defined. This is followed by the results, presented in Chapter 5,

where discussion is also provided. Finally, in Chapter 6, conclusions are drawn, and

recommendations for future work are made.

Chapter 2

Foundations

This chapter aims to provide the necessary groundwork upon which the rest of the

project builds. We begin with an overview of the challenge of gradient estimation for

an expected cost—a key theoretical backbone for our work. We then provide a short

introduction to some RL concepts, and define our notation. Thereafter, we narrow our

discussion to a relevant class of RL algorithms, under which MADDPG falls, and show

where gradient estimation is relevant. Finally, we present the core MADDPG algorithm,

highlighting the focus of this investigation.

2.1 Primer on Gradient Estimation

Methods in machine learning often require the calculation of a gradient, for the sake of

gradient-based optimisation [Goodfellow et al., 2016, chpt. 6]. Note that this field is

far richer than the brief treatment given here; for a comprehensive discussion, see the

review by Mohamed et al. [2020]. For now, consider a random vector, x, which is drawn

from some parametric distribution, x ∼ p(x;θ), where θ represents the parameters.

Suppose there is some cost function, f (x), and we wish to minimise the expected

cost with respect to θ, via gradient descent. To do this, we require an estimate of

∇θEx∼p(x;θ)[f (x)]. Expanding the expected value into its integral form:

∇θEx∼p(x;θ)[f (x)] = ∇θ

∫
x

p(x;θ) f (x) dx =
∫

x
[∇θ p(x;θ)] f (x) dx (2.1)

In most cases, such an integral is intractable in closed-form. Furthermore, Monte

Carlo methods cannot be used to estimate its value, since we cannot sample from

∇θ p(x;θ), as it is not necessarily a valid probability distribution—it could, for example,

be negative for some value of x.

4

Chapter 2. Foundations 5

The literature primarily suggests two classes of techniques to overcome this problem,

both of which rearrange the integral into a form with which Monte Carlo estimation can

be performed.

Score Function Estimation

The first approach is called Score Function Estimation [Kleijnen and Rubinstein,

1996], also known as the Likelihood Ratio [Glynn, 1990] approach, or just REIN-

FORCE [Williams, 1992]. This technique hinges on the following relationship:

∇θ p(x;θ) = p(x;θ) · ∇θ p(x;θ)

p(x;θ)
= p(x;θ)∇θ log p(x;θ) (2.2)

Substituting this equivalence into the integrand from (2.1), we obtain:

∇θEx∼p(x;θ)[f (x)] =
∫

x
p(x;θ)∇θ log p(x;θ) f (x) dx (2.3)

Because p(x;θ) is, by definition, a valid probability distribution, we can change this

integral back into an expectation under p(x;θ),

∇θEx∼p(x;θ)[f (x)] = Ex∼p(x;θ)

[
∇θ log p(x;θ) f (x)

]
(2.4)

and thus use a Monte Carlo estimate with N samples,

∇θEx∼p(x;θ)[f (x)]≈
1
N

N

∑
n=1

∇θ log p(x(n);θ) f (x(n)) , x(n) ∼ p(x;θ) (2.5)

Notice that for the estimate in (2.5) to exist, the gradient of the log of the distribution

must exist, but no constraints are placed on f (x). This is beneficial, for f (x) may be a

‘black box’—we can simply query f for each sampled value of x. However, this method

is known to have high variance, particularly when implemented in high-dimensional

problems [Mohamed et al., 2020].

Pathwise Derivative Estimation

The second approach to overcome the challenges encountered in (2.1) is called Path-

wise Derivative Estimation. Fundamental to this method is the ‘reparameterisation

trick’ [Kingma and Welling, 2013]. Recall that we previously defined a θ-parameterised

distribution, p(x;θ). Now, we decouple the parameterisation from the randomness, by

first defining a random variable ε, and then defining a θ-parameterised transformation, t.

That is, to sample x:

x = t(ε;θ) , ε∼ p(ε) (2.6)

Chapter 2. Foundations 6

The so-called ‘Law of the Unconscious Statistician’ [DeGroot and Schervish, 2011,

pg. 213] implies that the expected value of the cost under the original parameterisation

is the same as that under the reparameterisation. That is,

∇θEx∼p(x;θ)[f (x)]
LOTUS
= ∇θEε∼p(ε)[f (t(ε;θ))] (2.7)

Accordingly, we can expand the expectation under the new parameterisation into its

integral form, and then apply the chain rule:

∇θEx∼p(x;θ)[f (x)] = ∇θ

∫
ε

p(ε) f (t(ε;θ)) dε (2.8)

=
∫

ε

p(ε)∇θ f (t(ε;θ)) dε (2.9)

=
∫

ε

p(ε)∇θt(ε;θ)∇x f (x)
∣∣
x=t(ε;θ) dε (2.10)

As before, p(ε) is a valid probability distribution by definition, and we can thus

rewrite the expression as an expectation, and take a Monte Carlo estimate with N

samples:

∇θEx∼p(x;θ)[f (x)] = Eε∼p(ε)

[
∇θt(ε;θ)∇x f (x)

∣∣
x=t(ε;θ)

]
(2.11)

∇θEx∼p(x;θ)[f (x)]≈
1
N

N

∑
n=1

∇θt(ε(n);θ)∇x f (x(n))
∣∣
x(n)=t(ε(n);θ) , ε

(n) ∼ p(ε) (2.12)

This method for estimating the gradient is known to have lower variance than the

score-function approach, even for high-dimensional problems [Mohamed et al., 2020].

However, notice the key difference between the estimate from before, in (2.5), and

this estimate, in (2.12). Whereas no constraints were placed on f (x) previously, this

function must now be differentiable with respect to x. That is, ∇x f (x) must exist, and

as a result, f (x) can no longer simply be a ‘black box’. Alas, in many contexts, this is

problematic. Relevant to this work is the situation where f (x) is not differentiable due

to discreteness—i.e. where the cost function is defined as f : Zn 7→ R.

Introduced concurrently by Jang et al. [2017] and Maddison et al. [2017], the

Gumbel-Softmax (GS) (or ‘Concrete’) distribution is an attempt to solve this issue of

non-differentiability. This approach ‘relaxes’ a discrete, non-differentiable distribution

into a continuous, differentiable distribution, which is approximately equivalent. In

doing so, a reparameterisation gradient can be admitted, for Pathwise Derivative Esti-

mation. Given the importance of the GS to this project, robust mathematical details will

be given in Chapter 3.

Chapter 2. Foundations 7

2.2 Reinforcement Learning Background

Solving reinforcement learning problems, whether the multi-agent case presented in

this dissertation, or the single-agent case, has been a topic of research for many decades

(e.g. [Waltz and Fu, 1965]). Naturally, from these efforts, a myriad of techniques and

algorithms has arisen. For a comprehensive treatment of the discipline, starting from the

foundations and building in complexity, the reader is encouraged to see the canonical

textbook by Sutton and Barto [2018]. Now, we focus our attention on a subset of

relevant methods, and do so briefly.

First, we ought to formalise the discussion, adopting common notation [Christianos

et al., 2020, Lowe et al., 2017]. We model a multi-agent problem as a Partially-

Observable Stochastic Game (POSG) [Shapley, 1953, Hansen et al., 2004], operating

in discrete time-steps, with a set of N agents, N = {1, . . . ,N}. Let the state space be

denoted as S , the joint-action space as A = A1×·· ·×AN , and the joint-observation

space as O = O1× ·· · ×ON . Each agent i ∈ N perceives only a local observation,

oi ∈ Oi, which depends on the current state and the joint-action taken—we denote

this as the agent’s observation function, Ωi : S ×A 7→ ∆(Oi), where ∆ indicates the

probability simplex of the appropriate dimension, i.e. ∆dim(Oi)−1. We define a transition

function, P : S ×A 7→ ∆(S), which describes the probability of transitioning from one

state to another, given a joint action. We further define a reward function for each agent,

R i : S ×A×S 7→ R. Let the reward given to agent i at time-step t be denoted as r(t)i .

The game begins in an initial state, which depends on the distribution ρ = ∆(S).
We consider here ‘model-free’ approaches, where agents do not explicitly create nor

store a model of the environment’s underlying dynamics. Instead, the agents repeatedly

interact with the environment and try learn an optimal way of doing so. The manner in

which an agent acts is termed its ‘policy’—what it should do when it is in a particular

state. Informally speaking, agents are trying to figure out a ‘good’ policy—i.e. one

which yields high rewards. We define the ‘return’ for an agent i as its discounted

cumulative reward, Gi = ∑
T
t=0 γ tr(t)i , where T is the number of time-steps in an episode,

and γ ∈ (0,1] is a discounting factor—controlling how much we care about future

rewards relative to current rewards.

Denote each agent’s policy as πi, with the set of all policies being π = {π1, . . . ,πN}.
The objective in MARL, then, is to find policies such that the return of each agent i,

following πi, is maximised with respect to the other agents’ policies, π−i := {π \ πi}.

Chapter 2. Foundations 8

That is, we aim to find an optimal set of policies, π, such that

∀i : πi ∈ argmaxπ̂i
E
[
Gi | π̂i,π−i

]
(2.13)

How can we learn such an optimal policy? Broadly, two model-free philosophies

have dominated the field: Value Function methods, and Policy Gradient methods.

Value function methods involve, perhaps obviously, ‘values’: metrics that indicate

the rewards an agent may expect to receive when in a given state, taking a given action,

or both. We often care about the state-action value—also known as the Q-value. For a

set of policies π, the Q-value for agent i, taking an action ai, from a state si, is defined

as:

Qπ
(
si,ai

)
:= Eπ[Gi | si,ai] (2.14)

In value function methods, an agent learns these values for various states and

actions, and thereafter generates a policy implicitly—e.g. the common ‘epsilon greedy’

approach selects a random action occasionally (with a probability of ε), and the ‘greedy’

action (i.e. the action with the highest value) otherwise. A popular instance of the

value-function technique is Q-learning [Watkins, 1989, Watkins and Dayan, 1992].

Early methods, Q-learning included, attempted to learn in a tabular manner; that is,

by enumerating the state and action spaces, and explicitly storing the learned values for

every state-action pair. Such methods, however, do not scale well: problems quickly

become infeasible as the problem’s dimensionality increases. Moreover, experience

is not used efficiently, for no interpolation of values of nearby states can be made,

despite this being a sensible technique [Kaelbling et al., 1996]. An alternative is to use

a function approximator, with parameters θ. For example, rather than storing many

Q-values, we could learn a Q-function, Q(s,a;θ).

In a landmark paper by Sutton et al. [1999], the authors took the function approxima-

tion route, but with a key difference: the policy is modelled explicitly. That is, instead

of learning values and using them to generate a policy, an agent’s policy is encoded

directly as πi(a | s;θ)—a distribution over actions given the state. Assuming the policy

is differentiable with respect to its parameters (i.e. ∂π(a|s;θ)
∂θ

exists), an optimal policy

can be found through gradient ascent of the expected return. This work ushered in the

other dominant approach to model-free learning: policy gradient methods.

Modern reinforcement learning algorithms often use a combination of value- and

policy-based approaches, broadly termed Actor-Critic methods—whereby the ‘actor’

learns the policy function, and the ‘critic’ learns the value function (e.g. A3C [Mnih

et al., 2016]).

Chapter 2. Foundations 9

2.3 Deterministic Policy Gradient Methods

We now narrow our discussion to a specific class of RL algorithms, called deterministic

policy gradient methods, and synthesise this topic with the gradient estimation theory

from Section 2.1.

By modelling the policy with a function approximator, as π(a | s;θ), the goal is to

use gradient-based optimisation to maximise the expected returns under this policy with

respect to the policy parameters, θ. A fundamental result to enable such methods is the

Stochastic Policy Gradient Theorem (SPGT), presented by Sutton et al. [1999]:

∇θEπ[r(s,a)] = Eπ[∇θ logπ(a | s;θ)Qπ(s,a)] (2.15)

Notice the similarity of this equivalence, (2.15), and the score-function estimator

presented in (2.4). Indeed, the former is an instance of the latter—the work by Sutton

et al. [1999] builds on the REINFORCE method [Williams, 1992]. In fact, a simple

way of implementing (2.15) is to approximate Qπ(s,a) with the sample return, and this

method itself is called REINFORCE in RL literature. As discussed previously, though

such methods are relatively straightforward, they suffer from high variance.

Taking a different approach, Silver et al. [2014] introduced the Deterministic Policy

Gradient (DPG) method. Here, instead of trying to learn a stochastic policy, π(a | s;θ),

the authors make the policy deterministic, notating it as a = µ(s;θ). In doing so, they

derive the Deterministic Policy Gradient Theorem (DPGT):

∇θEµ
[
r(s,a = µ(s;θ))

]
= Eµ

[
∇θ µ(s;θ) ∇a Qµ(s,a)

∣∣∣
a=µ(s;θ)

]
(2.16)

We notice again a similarity, now between (2.16) and the pathwise-derivative

method in (2.11). Silver et al. [2014] show that, indeed, the DPGT is the limiting

case of a reparameterisation of the SPGT. The benefit of DPG is thus the same as for

pathwise-derivative methods generally—reduced variance in the gradient estimates [Mo-

hamed et al., 2020]. However, the same drawback exists too; notice how the gradient

∇a Qµ(s,a) must now exist. Herein lies a limitation of DPG: one cannot use the method

in discrete-action problems, for this gradient does not exist in such contexts.

The authors of DPG made no mention of this topic, for their method was presented

explicitly for continuous-action problems, where the required gradients do exist. Build-

ing on the DPG algorithm—inspired by success of Mnih et al. [2013] in incorporating

deep neural networks to Q-learning—Lillicrap et al. [2016] then developed the Deep

Deterministic Policy Gradient (DDPG) algorithm. This approach introduced, amongst

Chapter 2. Foundations 10

other things, the use of deep neural networks for the function approximation in DPG.

Here, too, the focus was explicitly on continuous action-spaces, and there were no

problems with the aforementioned gradient calculations.

The MADDPG algorithm [Lowe et al., 2017] was introduced shortly thereafter, as a

multi-agent application of DDPG. Unlike DPG and DDPG, though, it seems that the

authors desired a unified algorithm: something that could be used in both continuous

and discrete situations. For continuous contexts, the underlying DPG approach could

work as per usual; for discrete contexts, however, the authors applied the GS trick [Jang

et al., 2017, Maddison et al., 2017] to the discrete actions taken. In doing so, the discrete

action distribution was relaxed, and an approximation of the gradient, ∇a Qµ(s,a), could

be used.

Though this relaxation ‘works’—i.e. it enabled the authors to train MADDPG in

discrete-action spaces—the GS is known to introduce statistical bias into the gradient

estimation [Lorberbom et al., 2019]. We recall that, in their surveillance of MARL

techniques, Papoudakis et al. [2021] found that MADDPG achieved competitive returns

in some tasks, but performed poorly in grid-world environments, where the action-space

is discrete. The authors believed that the poor performance was a consequence of the

bias introduced by the GS.

2.4 MADDPG Implementation Details

Justification for using MADDPG

We choose to study the impact of using the GS in discrete-action spaces with MADDPG,

rather than, e.g., with DPG or DDPG, for two reasons. Firstly, since the problem was

identified in MADDPG by Papoudakis et al. [2021], we have a baseline from which to

work—this includes a code implementation for the algorithm, from which inspiration

can be drawn; already-tuned hyperparameters for a variety of tasks; and existing results

with the GS, for comparison and sanity-checking. Secondly, MARL is an active field

of research, and improving results in multi-agent tasks is a worthwhile endeavour.

Therefore, if an improvement to the original MADDPG algorithm could be found—e.g.

finding an alternative to the GS that yields better returns—it would be of great use to

the broader MARL community.

Chapter 2. Foundations 11

Core Algorithm

Some high-level knowledge about MADDPG is helpful for our discussion. Introduced

by Lowe et al. [2017], MADDPG pioneered as an early deep RL method for multi-agent

settings. Situations with multiple agents are challenging because of environmental non-

stationarity [Papoudakis et al., 2019]—that is, from the perspective of a single agent,

the environment changes in a way that cannot be explained by that agent’s own actions.

Stationarity, however, is fundamental to many extant single-agent RL algorithms.

MADDPG overcomes this difficulty by using a Centralised Training, Decentralised

Execution (CTDE) approach, where each agent has a centralised critic but a decen-

tralised actor. By centralising the critic—i.e. by conditioning the training of the agents

on the joint observations and actions—the problem can be perceived as stationary

from the perspective of each agent. Each agent’s actor network, however, is still only

conditioned on that agent’s local observation, such that at execution-time, the agents

are indeed acting individually. For agent i, we write this as:

Critic: Qi(o1, . . . ,oi, . . . ,oN ,a1, . . . ,ai, . . . ,aN) ; Actor: µi(oi)

Since this deals with the problem of non-stationarity [Papoudakis et al., 2019], the

single-agent RL technique of DDPG can be utilised in multi-agent scenarios—hence,

MADDPG. We recall, however, that for discrete-action tasks used here, a relaxation of

the action distribution must be applied, as discussed previously.

Other implementation details of MADDPG build on those for DDPG [Lillicrap

et al., 2016]. These include: having separate ‘behaviour’ and ‘target’ networks with

Polyak averaging to stabilise training, introduced by Mnih et al. [2013] and discussed

analytically by Zhang et al. [2021]; and training with uniform samples from an experi-

ence replay buffer, D , such that the correlations between consecutive training-steps are

broken [Mnih et al., 2013].

The implemented algorithm for this project is kept mostly the same as it was in the

original paper by Lowe et al. [2017], with some extensions and omissions, mentioned

shortly. High-level details for our core implementation are given in Algorithm 1.

Typeset in orange is the crux of this project: the gradient estimation required for the

sake of updating the actor, since the agents are operating in discrete-action spaces. We

notate here the estimation technique used as ξ(·). In the original implementation, this is

simply the GS; this project thus hopes to find an improved ξ(·).

Chapter 2. Foundations 12

Algorithm 1: MADDPG algorithm for N agents in discrete-action spaces
Denote actor networks as: µi = µ(· ;θi) , µ̄i = µ(· ; θ̄i), and

denote critic networks as: Qi = Q(· ;φi) , Q̄i = Q(· ; φ̄i),

where {θ,φ} and {θ̄, φ̄} indicate the behaviour and target parameters

respectively.

while elapsed-time-steps < total-time-steps do
Initial observations: ooo = {o1, . . . ,oN}
for t = 1 to T do

Execute actions with each agent’s policy: aaa =
{

µ1(o1), . . . ,µN(oN)
}

Receive rewards rrr and new observations ooo ′′′

Store tuple {ooo,,,aaa,,,rrr,,,ooo ′′′} in replay buffer D
Update current observations: ooo← ooo ′′′

Sample a random mini-batch of S samples {ooo j,aaa j,rrr j,ooo ′′′ j} from D
for agent i = 1 to N do

Set target using current reward and target networks:

y j
i = r j

i + γ Q̄i

(
ooo ′′′ j, µ̄1(o

′ j
1), . . . , µ̄N(o

′ j
N)

)
Update critic by minimising the loss, Lc:

∇φiLc(φi) = ∇φi

1
S ∑

j

(
y j

i −Qi(ooo j,aaa j)
)2

Update actor using the sampled policy gradient:

−∇θiLa(θi) =
1
S ∑

j
∇θi µi(o

j
i) ∇aiQi(ooo j,a j

1, . . . ,ai, . . . ,a
j
N)
∣∣
ai=ξ

(
µi(o

j
i)
)

end for
Update target parameters for each agent i using soft updates of size β:

θ̄i← βθi +(1−β)θ̄i

φ̄i← βφi +(1−β)φ̄i

end for
end while

Chapter 2. Foundations 13

Extensions & Omissions

In the period since MADDPG was originally introduced, extensions to the algorithm

have been proposed by various authors. The extensions implemented for this project

mostly follow the lead of Papoudakis et al. [2021] in their benchmarking paper, and the

salient ones are mentioned below:

• Replay buffer warm-up

Early in the training, the replay buffer D contains only a small set of samples; to

improve exploration early-on, the buffer is first populated with random transitions

from untrained networks (e.g. [Srivastava et al., 2019]). After this, training is

undertaken normally.

• Policy regularisation

Adding a regularising term to each agent’s policy has been shown to have some

benefits, including promoting co-operation between them [Roy et al., 2020, Liu

et al., 2021]. Specifically, with a regularisation parameter λ, we add a term to the

actor loss such that the gradient is taken as: −∇θi

[
La(θi)+λ∑ j(µi(o

j
i))

2
]
.

• Reward standardisation

In some environments, the received rewards can vary largely in magnitude, mak-

ing learning unstable. This issue can be alleviated by normalising each reward by

the running statistics of the rewards over each agent’s lifetime [Papoudakis et al.,

2021].

• Increase training frequency

In the implementation by Lowe et al. [2017], the network parameters were updated

after every 100 samples added to the replay buffer. Here, we increase that update

frequency—the specifics of which depend on the environment.

Moreover, some aspects of MADDPG were not implemented here. Examples

include policy ensembles [Lowe et al., 2017], parameter sharing (e.g. [Gupta et al.,

2017, Chu and Ye, 2017]), and using Gated Recurrent Units [Cho et al., 2014] in the

neural networks (e.g. [Papoudakis et al., 2021]). These omissions were made to avoid

unnecessary complexity, for the present research enquiry is about the performance of

the GS relative to other gradient estimation techniques, not about achieving maximal

absolute returns. Advances in the current project could certainly be applied alongside

other extensions for a wholly-stronger algorithm—this is left as future work.

Chapter 3

Discrete Gradient Estimation

We now provide an accessible explanation of the discrete gradient estimation techniques

proposed for this project, starting with an exposition of the original GS method. A brief

literature surveillance of alternative techniques is then given, followed by a description

of the methods chosen for experimental investigation.

3.1 The Gumbel-Softmax

Fundamental to this topic, there are two questions: how does one sample from a discrete

distribution, and how does one calculate the gradient of taking this sample? A common

answer to the first question is an important precursor to the variety of answers for the

second.

We consider a situation of a parametric discrete distribution, p(a;ζ), specified by an

unconstrained vector of parameters, ζ ∈ RN . In our context, these parameters represent

the outputs of a policy network, and we wish to choose one of N possible actions based

on their values—that is, sample a∼ p(a;ζ).

A simple method of sampling from this distribution is first to apply the softmax

operation,

ωi = softmax(ζi) :=
expζi

∑
N
n=1 expζn

(3.1)

to yield constrained parameters, ω: ωi ≥ 0, ∑
N
n ωn = 1, which indicate the likelihood

of each action. One can then divide the unit interval into ‘chunks’ proportional to

the constrained values, and sample uniformly over this interval; the discrete sample is

whichever chunk the uniform sample falls into [Barber, 2012, Chpt. 27].

An alternative is the so-called ‘Gumbel-Max’ trick (discussed by Maddison et al.

14

Chapter 3. Discrete Gradient Estimation 15

[2014]), which avoids computing the constrained probabilities. Instead, one simply

perturbs each of the unconstrained parameters by noise drawn from a Gumbel dis-

tribution [Gumbel, 1954]. The discrete sample is whichever perturbed value is the

largest:

a = one_hotN(argmaxi(ζi +gi)) , gi ∼ G(0,1) (3.2)

where one_hotN encodes the integer representation of the argmax as an N-dimensional

vector, and G(0,1) is the ‘standard’ Gumbel distribution. Drawing Gumbel noise can

be done via inverse transform sampling: by first sampling from the uniform distribution,

ui ∼U(0,1), and then transforming according to gi =− log(− log(ui)) [Murphy, 2023,

Chpt. 6.5.6].

We now answer the second question from earlier: after taking a discrete sample, how

do we calculate the gradient? The argmax’s derivative is zero everywhere, except at

the discontinuous transitions between discrete values, where the derivative is undefined.

As a result, the Gumbel-Max trick is non-differentiable. We may wonder, can we

‘smoothen’ the argmax into something that is differentiable? Indeed, this was the key

idea conceived by Jang et al. [2017] and Maddison et al. [2017] in presenting the

Gumbel-Softmax (GS). As its name suggests, instead of using an argmax operation, a

softmax is used—a softer argmax, in a sense. Furthermore, the softmax is tempered

with a temperature parameter, τ > 0: softmaxτ(x) = softmax(x
τ
). In the limit of τ→ 0,

this operation is equivalent to the argmax, and thus the GS approaches the original

distribution. Conversely, as τ→ ∞, the GS approaches a uniform distribution, where

each category is equally-likely. The temperature thus controls the ‘degree of relaxation’.

Reusing the gradient-estimator notation ξ(·) from before, the relaxed distribution is:

ξGS(p(a;ζ)) = softmaxτ(ζi +gi) , gi ∼ G(0,1) (3.3)

=
exp((ζi +gi)/τ)

∑
N
n=1 exp((ζn +gn)/τ)

(3.4)

For later discussions, it is helpful to consider the GS as a relaxation over the N-

dimensional probability simplex, ∆N−1. For visualisation, consider the case of N = 3.

Whereas previously we had a point-mass on the simplex for our parametric distribution,

specified by ζ, we now have a smoothed probability density. This is shown in Figure 3.1,

where the likelihood of the density corresponds to the degree of darkness, and the three

sections indicate the three possible realisations of the discrete sample.

By relaxing the distribution in this way, it becomes differentiable—meaning we

can incorporate it into a gradient-based optimisation procedure. There is a downside,

Chapter 3. Discrete Gradient Estimation 16

Figure 3.1: Depiction of the GS distribution over the probability simplex. An illustrative

sample from the blue category is shown. (Adapted from Fan et al. [2022])

however: in relaxing, we introduce statistical bias [Paulus et al., 2021]. To understand

this intuitively, consider again the limit τ→ ∞, where the distribution becomes uniform.

In such a case, we have removed all parametric information, ζ, about our problem—each

category simply has a probability of 1/N. Hence, as we relax, we also steer further

away from the original distribution. Herein lies a trade-off: turning the temperature too

low means having extreme gradients (or non-existent gradients when τ = 0), but turning

the temperature too high means introducing a large bias.

Though such a bias is inevitable when relaxing the distribution, there is an easy

improvement to the vanilla GS. By naïvely applying the relaxation, we introduce bias

in both the ‘forward pass’ (when we sample from the distribution) and in the ‘backward

pass’ (when we calculate the gradients, e.g. for updating our neural network). However,

it is only the latter that requires differentiability. Hence, building on the so-called

‘Straight-Through’ estimator proposed by Bengio et al. [2013], Jang et al. [2017] also

introduce the Straight-Through Gumbel-Softmax (STGS) estimator—where, in the

backward pass, the GS relaxation is applied, but in the forward pass, the original

argmax operation is used. In the context of this project, unless otherwise stated, we use

GS to mean the STGS—e.g. in MADDPG, it is actually the straight-through variant,

the STGS, that is applied, but we have hitherto called it the GS. Alas, despite presenting

an unmodified forward computation, the STGS still introduces bias into the gradient

estimation, with the bias dependent on the temperature used.

3.2 Available Alternatives

A core insight of this project is that discrete gradient estimation does not exist solely in

the domain of RL. In fact, the original GS papers [Jang et al., 2017, Maddison et al.,

2017] demonstrated the technique on problems such as structured output prediction

Chapter 3. Discrete Gradient Estimation 17

and density estimation. Indeed, discrete gradients arise in a wide variety of contexts—

including discrete variational auto-encoders [Rolfe, 2017, Kingma et al., 2019], hard

attention [Gulcehre et al., 2017, Yan et al., 2018], generative adversarial networks

for text [Kusner and Hernández-Lobato, 2016, Zhang et al., 2017], and convolutional

networks [Veit and Belongie, 2019]. As a result, the biased reparameterisation of the

GS is problematic in a wide variety of domains, and accordingly, a significant research

effort has focused on improving the method. In this brief section, we present a handful

of salient papers that could, conceivably, be integrated into MADDPG, with a hope

of overcoming the problems of the GS. For a more thorough analysis of the GS and

associated advances in discrete gradient estimation, see the recent review by Huijben

et al. [2022].

As elucidated in Section 2.1, there are two dominant approaches to gradient estima-

tion generally [Mohamed et al., 2020]: score-function methods, and pathwise-derivative

methods. Many algorithms in the literature avoid any discrete-gradient problems by

sticking to the first approach, such that the SPGT from (2.15) can be used. Improve-

ments in these methods focus on reducing the variance of the estimator, usually through

the use of control variates. Examples include: subtracting a ‘baseline’ [Weaver and Tao,

2001, Greensmith et al., 2001]; using a Taylor expansion of a mean-field network, as in

MuProp [Gu et al., 2016]; and using copula-based sampling, as in CARMS [Dimitriev

and Zhou, 2021]. Authors have also combined score-function and pathwise-derivative

methods, leveraging desirable qualities from both approaches. For example: using both

REINFORCE and the GS in conjunction, as in REBAR [Tucker et al., 2017]; training a

surrogate neural network as a control variate, as in RELAX [Grathwohl et al., 2018];

and using sampling without replacement [Kool et al., 2020].

Though these methods are promising, we choose here to focus on extensions that

invoke the pathwise-derivative approach exclusively, such that we can give them a

proper, thorough treatment. Early pathwise-derivative techniques focused on Bernoulli

variables, e.g. the work by Bengio et al. [2013], with modern developments such as

FouST [Pervez et al., 2020]. However, the GS trick [Jang et al., 2017, Maddison et al.,

2017] was the first to formulate a pathwise-derivative gradient estimator for categorical

variables. Since then, various improvements have been suggested to this end.

The Gumbel-Rao Monte Carlo (GRMC) approach [Paulus et al., 2021] applies

‘Rao-Blackwellisation’ to the original GS estimator, by drawing multiple Gumbel sam-

ples, and then marginalising them out. By the Rao-Blackwell Theorem [Blackwell,

1947], this estimator is usually better, and never worse, than the original estimator.

Chapter 3. Discrete Gradient Estimation 18

The Gapped Straight-Through (GST) estimator [Fan et al., 2022] builds on this work

by using ‘deterministic perturbations’ instead of Gumbel noise. Here, estimator im-

provements are shown both analytically and empirically. The ‘Invertible Gaussian

Reparameterisation’ [Potapczynski et al., 2020] is a slightly different approach, where

Gaussian noise is used instead of Gumbel noise. Andriyash et al. [2019], too, move

away from using Gumbel noise in their method, and propose a simple piecewise-linear

relaxation instead. Some bolder methods exist too, which steer further away from the

GS foundations. For example, Lee et al. [2018] generalise the reparameterisation trick,

as discussed in (2.6), through manifold sampling, and are able to create an unbiased

and reduced-variance estimator. Lorberbom et al. [2019] avoid the need to ‘relax’ the

categorical distribution altogether by applying the technique of ‘direct optimisation’.

Though many possible avenues of exploration exist, we focus on two of these novel

options—these being, the GRMC and GST algorithms. We choose these in particular for

they require straightforward changes, as they were developed explicitly as descendants

of the GS. Furthermore, we also attempt to find simple adjustments to the extant GS

method, such as using lower temperatures and temperature annealing, to see if such easy

changes could improve the performance with MADDPG. The implemented methods

are discussed in the following section.

3.3 Chosen Alternatives

Straight-Through Gumbel Softmax (STGS-1, STGS-T)

Interestingly, both in the original MADDPG paper [Lowe et al., 2017], as well as the

benchmarking paper [Papoudakis et al., 2021], it seems that the authors simply use a

temperature of 1.0 for the GS relaxation*; yet, Papoudakis et al. [2021] suggest the bias

is the problem with the GS, which is related to the temperature. Accordingly, it seems

worthwhile to explore alternative temperatures.

Under this heading, then, we consider two estimators. The first is the ‘baseline’

implementation, for it was implemented in past works: the STGS estimator with a

temperature of τ = 1.0, denoted as STGS-1. We further consider the STGS estimator

with a temperature of τ < 1.0, denoted as STGS-T, where τ is a tunable hyperparameter.

*Nothing is explicitly stated about the temperature used in these papers; we are making such

conclusions by looking at their code implementations: Snippet from Lowe et al. [2017]; Snippet

from Papoudakis et al. [2021]

https://github.com/openai/maddpg/blob/3ceefa0ada3ff31d633dd0bde8ff95213ce99be3/maddpg/common/distributions.py#L205
https://github.com/uoe-agents/epymarl/blob/96db475082b7227f295b927927654b2dd91d80d4/src/learners/maddpg_learner.py#L95

Chapter 3. Discrete Gradient Estimation 19

This alternative estimator is the simplest change one can make, and serves as an easy

comparison.

Temperature-Annealed Gumbel Softmax (TAGS)

A fundamental challenge in RL is the exploitation-exploration dilemma [Sutton and

Barto, 2018], which describes the trade-off between taking actions that yield known,

good rewards (‘exploiting’), and taking actions which may or may not yield better

rewards (‘exploring’). In the original formulation of MADDPG [Lowe et al., 2017,

Appx: Alg. 1], exploration is achieved via the addition of noise to the policy output:

ai = µi(oi)+ηi, where η is drawn from some random process (originally discussed in

DDPG [Lillicrap et al., 2016]). However, this is applicable in continuous-action spaces.

For discrete cases, the GS itself provides some degree of exploration, since relaxing the

distribution places some probability mass onto other actions. Naturally, the amount of

exploration is controlled by the temperature parameter—more relaxation implies more

exploration.

Notice, then, the coupling between the exploration achieved and the bias introduced:

both are affected by changes in the temperature. Ideally, this would not be the case, such

that the hyperparameters could be tuned independently. Decoupling them would be a

long-term solution—an avenue for future work—but in the short-term, a work-around

must be made.

Since exploration is usually desirable in the beginning of a training procedure,

we propose setting the temperature to be high early-on, and then annealing it to be

lower over time. This allows agents to explore, while still reducing the bias in later

stages of training. Huijben et al. [2022] highlight temperature-annealing as a strategy

incorporated by several authors in various experiments with the GS. Specifically, they

mention using an exponentially-decaying annealing scheme, which we adopt here. We

define this as the Temperature-Annealed Gumbel-Softmax (TAGS) estimator.

Gumbel-Rao Monte Carlo (GRMC)

The next estimator for this project is entitled the GRMC, by Paulus et al. [2021]. Here,

the authors build on the success of the GS, but seek a way to lower the estimator’s

variance. Returning to the Gumbel-Max trick, they note that the argmax(ζi + gi)

operation is not invertible, implying that many instances of ζi +gi correspond to the

same action selection. Accordingly, they view the drawn Gumbel random variables as

Chapter 3. Discrete Gradient Estimation 20

‘auxiliary’, which can be marginalised out.

Notating the gradient of the original STGS estimator as ∇STGS = ∇aξSTGS, we have:

∇STGS :=
dsoftmaxτ(ζ+g)

da
(3.5)

With this notation, the authors propose the ‘Gumbel-Rao’ estimator:

∇GR := E
[

dsoftmaxτ(ζ+g)
da

∣∣∣ a
]

(3.6)

That is, ∇GR = E[∇STGS | a]. This estimator is a ‘Rao-Blackwell’ [Blackwell, 1947]

version of the original STGS estimator. It can be shown that it thus enjoys the same

mean as the STGS, but with lower (or at most, the same) variance:

E
[
||∇GR−∇ζ||2

]
≤ E

[
||∇STGS−∇ζ||2

]
(3.7)

where ∇ζ is the ‘true’ gradient. For rigorous mathematical details about the estimator’s

impact on variance, the reader is encouraged to see the full paper [Paulus et al., 2021].

Recall, however, Papoudakis et al. [2021] refer to the bias of the estimator as the

problem for MADDPG, not the variance. Though guarantees are only made about the

latter, the authors argue that with a lower variance, one can safely train the estimator at

lower temperatures—i.e. with a lower bias. Empirically, they show this to be true.

Though theoretically appealing, there is still the challenge of actually computing

E[dsoftmaxτ(ζ+g)/da | a]—indeed, a closed-form expression is shown to be difficult.

Therefore, the authors provide a Monte Carlo estimate, with K samples, which they

term the GRMCK estimator. They first show a distributional equivalence:

(ζ j +g j | a)
d
=

− log(E j)+ logZ(ζ) if j = i

− log
(

E j
exp(ζ j)

+ Ei
Z(ζ)

)
otherwise

(3.8)

where a is a one-hot sample with a 1 at index i, E j are independent and identically

distributed (i.i.d.) samples from the exponential distribution, and Z(ζ) = ∑ j exp(ζ j).

Accordingly, the GRMCK estimator is:

∇GRMCK :=
1
K

K

∑
k

dsoftmaxτ(ζ+gk)

da
, gk ∼ (ζ+g | a) (3.9)

In other words, we first sample a ∼ p(a;ζ), and then average over K Gumbel

samples conditioned on a. The result is an estimator with lower variance, which can

thus be trained at lower temperatures, with a lower bias. As before, we show this

procedure graphically on the probability simplex, in Figure 3.2.

Chapter 3. Discrete Gradient Estimation 21

Figure 3.2: Depiction of the GRMC method on the probability simplex. We sample a

as red in this example, and condition accordingly. We see that the K samples are thus

drawn from this conditioned space, and when averaged, yield a lower-variance sample.

(Adapted from Fan et al. [2022])

Gapped Straight-Through (GST)

The final estimator considered in this project is the most recently introduced: the GST,

by Fan et al. [2022]. Also building on past work, these authors study both the STGS and

the GRMC, and focus on their key properties: what is essential for good performance,

and what is merely ancillary? In particular, they focus on the Gumbel perturbation

employed in the STGS—finding that certain features of this perturbation are required

in the estimator, but not the Gumbel randomness. Indeed, they show that rather using

deterministic perturbations—two, specifically—satisfies the necessary requirements for

estimation, while boasting lower variance.

As in the GRMC estimator, we first draw a∼ p(a;ζ)—a one-hot representation of

the selected action—for the straight-through sample. In GRMC, we would then perturb

each of the logits, ζ, with Gumbel noise conditioned on a; now, we perturb with two

deterministic functions, m1(ζ,a) and m2(ζ,a). The detailed justification for the choices

of these functions is outside of the scope of this project; instead, the reader should see

the exposition in the paper itself [Fan et al., 2022]. For now, we describe them at a

high-level.

Firstly, we desire ‘consistency’ in the estimator: we want the sample conditioned

on a to have the same largest logit as the input distribution, i.e. max j ζ j. To this end,

the first perturbation, m1, ‘pushes’ the sample to the correct realisation, if necessary:

m1(ζ,a) =
(

max
j

ζ j−⟨ζ,a⟩
)
·a (3.10)

where ⟨·, ·⟩ indicates the inner product. Consider how this works: if a has already

selected the largest logit, then ⟨ζ,a⟩= max j ζ j, and m1 = 0. If not, then m1 ̸= 0, and

the sample is moved in the direction of the largest logit.

Chapter 3. Discrete Gradient Estimation 22

If non-zero, the first perturbation makes the largest logit the same as the a-selected

logit. However, we also want a ‘strict gap’ between these values—that is, we want the

unselected logits to be smaller. Accordingly, we define m2 to create a gap of κ between

them:

m2(ζ,a) =−
(

κ+ζ−max
j

ζ j

)
+

⊙ (1−a) (3.11)

where (x)+ := max(0,x), ⊙ indicates the Hadamard product. κ can usually be set

to 1.0 [Fan et al., 2022]. Here, the term (1− a) takes all the unselected logits in the

one-hot representation, and moves their parameter values away from the selected logit,

with a gap of at least κ.

With these perturbation functions defined, the GST estimator is then:

ξGST(p(a;ζ)) = softmaxτ (ζ+m1(ζ,a)+m2(ζ,a)) (3.12)

This procedure is again nicely visualised on the probability simplex. Figure 3.3

shows how the perturbations move the sample, given a particular realisation of a. The

resulting estimator is shown to have lower variance [Fan et al., 2022], and as before,

can thus be trained at lower temperatures, with lower bias.

Figure 3.3: Depiction of the GST on the probability simplex. We sample a as green in

this example. Notice how m1 then moves the original logits, specified by ζ, to the ‘border’

of green and red; m2 then enforces a ‘strict gap’. (Adapted from Fan et al. [2022])

Chapter 4

Experimental Methods

This chapter provides a succinct outline of the methodology we use in the project’s

experiments. We discuss the environments in which we test, and the metrics with which

we evaluate, as well as the details of the training—e.g. the hyperparameters used.

4.1 Environments

To test the performance of the proposed gradient estimators, compared to the original

STGS estimator, we train on three ‘environments’, with multiple ‘tasks’ (i.e. config-

urations) for each environment—with a total of 11 tasks overall. We use a sensible

subset of the choices made by Papoudakis et al. [2021] in their benchmarking paper,

which we motivate shortly. For simplicity, we choose to focus solely on co-operative

contexts, where agents are working together to maximise their cumulative reward—we

feel this is sufficient to demonstrate the aims of the project. Adversarial environments

are nonetheless important, and should form a part of future research.

The three implemented environments are described briefly below.

Multi-Agent Particle Environment (MPE)*: This environment was created by

Mordatch and Abbeel [2018], with adaptations made by Lowe et al. [2017] when

presenting MADDPG. In it, each agent is represented as a particle that can move around

a continuous, two-dimensional space, while interacting with other agents and various

‘landmark’ items. There are a variety of navigational tasks defined, and agents receive

dense reward signals for these tasks. The observation space for each agent usually

contains some information about distances to other agents and landmarks, along with

*Code for MPE is here: https://github.com/semitable/multiagent-particle-envs

23

https://github.com/semitable/multiagent-particle-envs

Chapter 4. Experimental Methods 24

metrics like agent-velocity. Communication between agents is also defined for some

tasks. Each agent has a discrete-action space of the four cardinal directions, and not

moving at all.

Importantly, we highlight that in the benchmarking paper by Papoudakis et al.

[2021], MADDPG performed fairly well in the MPE scenarios, similar to other MARL

algorithms. Accordingly, the goal for this environment—and the motivation for its

inclusion here—is not to improve on the returns with the alternative gradient estimation

techniques. Instead, we hope to use it as a sanity check: a simple test that each of the

alternative estimators has been implemented correctly and works with MADDPG. Of

course, such a check does not guarantee correctness, but it is a good indicator. We test

with two tasks from MPE: speaker_listener, and spread.

Level-Based Foraging (LBF)*: This environment was implemented for a paper

by Christianos et al. [2020], building on work by Albrecht and Ramamoorthy [2013].

Tasks consist of a discrete grid-world, with a collection of agents and randomly-placed

food. Each agent has a ‘level’, and likewise for each food item. An agent may collect

food if the sum of the agents’ levels directly adjacent to the food is at least as large as

the food’s level. That is, collection is successful iff: ∑ level(adj. agents)≥ level(food).

These tasks are highly customisable, and a plethora of combinations exists across

grid-size, agent-count, food-count, and observability (full or partial). An agent can act

discretely across 6 options: no operation, the four cardinal directions, and the ‘load’

operation, where it tries to pick up food.

In LBF, agents are solely rewarded based on the food they collect, and therefore,

rewards can be sparse—this makes it a challenging environment. Indeed, in the bench-

marking paper [Papoudakis et al., 2021], MADDPG performed comparatively poorly

in LBF, particularly in the more complex tasks (e.g. with larger grid-sizes). Accord-

ingly, this environment is vital for testing the alternative gradient estimation techniques.

The same seven configurations for LBF are implemented here as those in the work

by Papoudakis et al. [2021]—covering three grid-sizes, various agent-food pairs, and

some partial observability challenges. This provides a broad suite of tests on which to

evaluate the project’s aims.

Robot Warehouse (RWARE)†: This environment was also implemented by Chris-

tianos et al. [2020], based on work by Albrecht and Ramamoorthy [2016]. Here, a

*Code for LBF is here: https://github.com/semitable/lb-foraging
†Code for RWARE is here: https://github.com/semitable/robotic-warehouse

https://github.com/semitable/lb-foraging
https://github.com/semitable/robotic-warehouse

Chapter 4. Experimental Methods 25

task consists of robot agents, moving around a discrete grid-world warehouse. Agents

must move goods from a shelf to a goal-location, based on given requests. Agents are

rewarded for a successful delivery, though such rewards are very sparse—more so than

for LBF. As a result, this is a very challenging environment, and MADDPG performed

even worse in the benchmarks [Papoudakis et al., 2021] for RWARE than it did for

LBF.

As an initial insight, then, we consider two of the RWARE tasks: tiny-2ag and

tiny-4ag (i.e. the tiny grid-size, 10×11, with 2 or 4 agents). These should demonstrate

whether there is some hope in trying MADDPG with alternative estimators in RWARE—

success here would then encourage testing with other RWARE tasks in future.

Sample renderings of the three environments are given in Figure 4.1.

(a) MPE (b) LBF (c) RWARE

Figure 4.1: Example renderings of the three environments used for this project

4.2 Evaluation Metrics

To understand the success (or failure) of the new gradient estimation techniques com-

pared to the original STGS approach, metrics for evaluation ought to be chosen. Specifi-

cally, we focus on two metrics for performance: the returns achieved when implemented

with MADDPG, and the time required for computation, in a ‘toy’ gradient estimation

problem. Moreover, we present a brief foray into trying to understand why a particular

method might do well over the others, by looking at the gradient variance for a single

task. We discuss these metrics below.

Chapter 4. Experimental Methods 26

Returns: Maximum & Average

Recall that we define our MARL goal, in (2.13), as trying to find an optimal set of

policies, such that each agent maximises their expected return with respect to the

other agents’ policies. The achieved return, then, is an important metric to measure.

Since we focus on co-operative situations for this project, we simply consider the sum

of the achieved returns from all agents. Importantly, we are not concerned with the

returns achieved here relative to those achieved in, e.g., the MARL benchmarking paper

by Papoudakis et al. [2021]. Instead, for cogent and consistent analysis, we focus solely

on the relative performance of the various estimators against each other.

For this evaluation metric, we run the MADDPG algorithm in each task, with each

of the proposed gradient estimators. We train the algorithm for a fixed number of time-

steps, updating the networks with a defined period. Throughout training, we evaluate

the achieved returns 100 times every 50 000 time-steps. Each training iteration is done

over five random seeds, and from this, a 95% confidence interval is calculated for the

results.

Under this heading, we consider two distinct aspects of the achieved returns, fol-

lowing the lead of Papoudakis et al. [2021]. Firstly, we consider the maximum return.

For this, we find the evaluation time-step at which the return, averaged over the five

seeds, is highest. This indicates the raw performance of the algorithm when using a

given estimator.

Secondly, we consider the average return. For this, we average the evaluation

returns over all time-steps and seeds, for a given estimator in a given task. This metric

provides a proxy for understanding not just the magnitude of the returns, but how

quickly the algorithm can arrive at such returns in its training—i.e. how quickly its

training converges.

Compute Time

Though this project revolves around—and is motivated by—the MADDPG algorithm,

notice that the gradient estimators can also be compared in isolation. That is, when

comparing the computational burden of the various estimation procedures, we need not

integrate them into the broader MADDPG problem. Instead, we can take a closer look

solely at each estimator’s performance, unhindered by potential bottlenecks elsewhere.

Accordingly, we define here a simple, ‘toy’ problem for the estimators. We define

a set of input logits, ζ, of various dimensionalities, and measure the time it takes for

Chapter 4. Experimental Methods 27

each estimator to calculate the corresponding relaxations. Because STGS-1, STGS-T,

and TAGS all have the same underlying mechanics, we consider these under the single

umbrella of the STGS. For the GRMCK, we consider three values of K: 1, 10, and 50.

For each dimensionality, the estimation procedure is repeated 10 000 times, over five

different logit instances. These results are reported over a 95% confidence interval.

Gradient Variance

Suppose one of the alternative gradient estimation techniques performs significantly

better or worse than the original STGS, based on the returns achieved. The natural

follow-up question is: why? For our investigation to be complete, it is helpful if we

have empirical evidence for why a particular estimator is performing better than another.

This is not the primary aim of this project, and we cannot dive deeply into this topic

here—instead, we hope to provide an initial insight.

To do this, we choose one of the tasks where there is a notable difference in

performance between two estimators: between the baseline STGS-1 method and one

which performs much better (or worse). We then retrain the MADDPG algorithm in this

task, using each of the two estimators, this time logging the variance of the computed

gradients across each training mini-batch. We do this over the course of training, and

focus on any differences observed between the two methods.

We hypothesise that uninformative gradients—i.e. those due to a poor discrete-

gradient estimator—will yield a mini-batch with low variance, since there are no

elements in particular which ‘stand out’. In contrast, we believe that informative

gradients will have higher variance across the mini-batch, for the opposite reason—

particular components in the gradient vectors are more important than others, yielding

large differences between them.

At present, this belief is merely a hunch, but this is sufficient for our purposes—we

hope only to stimulate discussion into why we might observe a difference in estimator

performance. There is a fertile ground here for future research.

4.3 Training Details

Hyperparameters

Hyperparameter tuning is often an important, though time-consuming, component of

training RL algorithms. For simplicity, then, the optimal hyperparameters for the core

Chapter 4. Experimental Methods 28

MADDPG algorithm suggested by Papoudakis et al. [2021] are adopted here, mostly

without any changes. Table 4.1 reports the values used.

Table 4.1: Hyperparameters used for the core MADDPG algorithm, mostly taken verbatim

from Papoudakis et al. [2021]

MPE LBF RWARE

network type MLP MLP MLP

hidden dimensions (128,128) (64,64) (64,64)

learning rate 5e-4 3e-4 3e-4

reward standardisation True True True

policy regulariser 0.001 0.001 0.001

target update (β) 0.01 0.01 0.01

max timesteps 25 25 500

training interval (steps) 25 25 50

This limits our hyperparameter search to be over the novel gradient estimation

techniques and their associated parameters. Bayesian optimisation [Garnett, 2022] is

performed for this search, and we use search-range suggestions from the literature, when

available [Huijben et al., 2022, Paulus et al., 2021]. Each parameter is optimised for one

task in a particular environment, and then used for all other tasks in that environment.

The associated hyperparameter ranges for the estimators are described in Table 4.2,

along with the selected values for each.

Table 4.2: Hyperparameter details for the various gradient estimation techniques, with

the chosen parameters listed for the three environments.

Estimator: Range Explored MPE LBF RWARE

STGS-1 τ = 1.0 1.0 1.0 1.0

STGS-T τ ∈ (0,1) 0.6 0.5 0.6

TAGS τ ∈ [1,5]→ [0.1,0.5] 2.5→ 0.5 4.0→ 0.1 1.0→ 0.3

GRMCK τ ∈ (0,1]; K = {5,10,50} 1.0;5 0.5;10 0.7;5

GST τ ∈ (0,1] 0.6 0.7 0.7

Computational Load

Experiments for this project were run using single-core nodes on the University of Ed-

inburgh’s high-performance computing cluster, Eddie, and on Google Cloud’s Compute

Engine. Excluding the hyperparameter search, a total of 4952 CPU-hours were spent.

https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/high-performance-computing
https://cloud.google.com/compute
https://cloud.google.com/compute

Chapter 5

Experimental Results & Discussion

This chapter presents the results of the experiments outlined previously, paired with

brief, relevant discussions. We consider first the returns achieved in MADDPG with

each gradient estimation technique, and then the required compute-time for each in a

toy-problem; finally, we run a short experiment analysing the gradient variance in one

of the tasks.

5.1 Returns: Maximum & Average

Table 5.1 shows the maximum and average returns achieved using each gradient es-

timation technique, across each of the 11 tasks. We discuss these results below, per

environment, showing plots when relevant.

Multi-agent Particle Environment (MPE)

As mentioned previously, the MADDPG algorithm performed relatively well on MPE

tasks in the benchmarks presented by Papoudakis et al. [2021], achieving similarly

strong results to other MARL algorithms. Hence, we do not expect major improvements

with the alternative estimators—we use this environment essentially as a sanity check.

Indeed, we see that each of the alternative techniques performs similarly to the

baseline (STGS-1) for the two MPE environments, and any differences are statistically

insignificant. For that reason, we move forwards with increased confidence in our

implementation, and do not consider this environment further.

29

Chapter 5. Experimental Results & Discussion 30

Table 5.1: Maximum returns (Average returns) shown across all tasks and all algorithms,

presented with a 95% confidence interval over 5 seeds. Bold indicates the best perform-

ing metric for a situation. An asterisk (∗) indicates that a given metric is not significantly

different from the best performing metric in that situation, based on a heteroscedastic,

two-sided t-test with 5% significance. Under each task name is the number of time-steps

used for training.

Tasks STGS-1 STGS-T TAGS GRMCK GST

M
P

E speaker-listener

[2M]

−13.03±1.29∗

(−−−111888...555222±333...555777)

−13.72±1.55∗

(−19.33±3.53)

−−−111222...888888±111...888333

(−19.01±3.71)

−13.69±0.89∗

(−19.86±3.53)

−16.05±3.53∗

(−21.89±3.22)

spread

[2M]

−133.70±2.03∗

(−−−111444555...999111±555...555555)

−133.52±2.78∗

(−147.07±6.08)

−134.66±3.27∗

(−147.49±6.11)

−−−111333333...444999±222...000666

(−146.20±5.79)

−135.67±1.94∗

(−147.81±5.82)

Fo
ra

gi
ng 8x8-2p-2f-c

[5M]

111...000000±000...000000

(0.88±0.05)

111...000000±000...000111

(000...999111±000...000444)

111...000000±000...000111

(0.87±0.05)

111...000000±000...000000

(0.88±0.05)

111...000000±000...000000

(0.89±0.04)

8x8-2p-2f-2s-c

[5M]

0.79±0.07∗

(0.65±0.04)

000...888333±000...000333

(0.66±0.04)

0.78±0.03∗

(0.62±0.04)

0.81±0.05∗

(0.67±0.04)

0.81±0.02∗

(000...666888±000...000333)

10x10-3p-3f

[6M]

0.75±0.03

(0.58±0.04)

0.75±0.03

(0.59±0.03)

0.74±0.06

(0.51±0.04)

0.71±0.07

(0.57±0.03)

000...777999±000...000444

(000...666666±000...000333)

10x10-3p-3f-2s

[6M]

0.55±0.05∗

(0.48±0.01)

000...555888±000...000666

(0.48±0.01)

0.54±0.03

(0.46±0.01)

0.56±0.03∗

(0.49±0.01)

0.56±0.05∗

(000...555000±000...000111)

15x15-3p-5f

[7.5M]

0.24±0.02

(0.12±0.01)

0.28±0.06

(0.15±0.01)

0.20±0.03

(0.08±0.01)

0.26±0.05

(0.16±0.01)

000...333111±000...000444

(000...222000±000...000111)

15x15-4p-3f

[7.5M]

0.79±0.03

(0.54±0.04)

0.79±0.06

(0.58±0.04)

0.77±0.06

(0.45±0.04)

0.79±0.04

(0.58±0.04)

000...888333±000...000444

(000...666777±000...000333)

15x15-4p-5f

[7.5M]

0.33±0.06

(0.13±0.02)

0.46±0.12

(0.22±0.02)

0.24±0.05

(0.10±0.01)

0.43±0.06

(0.21±0.02)

000...444888±000...000666

(000...333000±000...000222)

RW
A

R
E

tiny 2ag

[7.5M]

1.37±0.22∗

(0.55±0.07)

1.37±0.49∗

(0.64±0.08)

111...555000±000...444666

(0.60±0.08)

1.37±0.40∗

(000...666555±000...000777)

1.40±0.58∗

(000...666555±000...000777)

tiny 4ag

[7.5M]

2.68±0.49

(0.84±0.12)

3.18±0.60

(1.09±0.15)

2.23±0.50

(0.78±0.11)

3.17±0.85

(1.15±0.15)

444...111666±000...999777

(111...888222±000...222111)

Chapter 5. Experimental Results & Discussion 31

Level-Based Foraging

We consider now the LBF environment across seven different tasks.

Firstly, we look at two tasks with an 8× 8 grid: one with full-observability

(8x8-2p-2f), and one with partial-observability (8x8-2p-2f-2s). Notice in these

results, in Table 5.1, that performance differences across the estimation techniques is

statistically insignificant. In 8x8-2p-2f, we see that STGS-T trains marginally faster

than the other approaches, and in 8x8-2p-2f-2s, we see that TAGS trains marginally

slower than the other approaches—both based on the average returns observed. Nonethe-

less, each algorithm arrives at a similar maximum return. Due to the insignificance of

this result, the training curves are uninteresting, and are not plotted here.

We next look at two tasks with an 10× 10 grid, with similar situations as be-

fore: one with full-observability (10x10-3p-3f), and one with partial-observability

(10x10-3p-3f-2s). Plots of the evaluation returns over the duration of training are

given in Figure 5.1.

Return

Step

GSTSTGS-TSTGS-1 TAGS GRMCK

0 1M 2M 3M 4M 5M

0

0.2

0.4

0.6

0.8

(a) lbf-10x10-3p-3f

Return

Step

GSTSTGS-TSTGS-1 TAGS GRMCK

0 1M 2M 3M 4M 5M

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) lbf-10x10-3p-3f-2s

Figure 5.1: Evaluation returns for two LBF tasks (10× 10) over the training period,

where the shaded region indicates the standard error as calculated over 5 seeds.

In the first task, seen in Figure 5.1a, we see an improvement with a novel gradient

estimation technique: the GST achieves the highest maximum and average returns

Chapter 5. Experimental Results & Discussion 32

for the task, beating the baseline STGS-1 method with statistical significance. It is

clear in the figure how training with the GST converges faster than with the other

methods. STGS-T and GRMCK perform similarly to the baseline. TAGS, however,

performs much worse in average returns—i.e. it converges slower for the task—though

it eventually achieves similar maximum returns.

In the task with partial observability, seen in Figure 5.1b, we are less successful—the

alternative techniques achieve statistically similar returns to the baseline, across both

maximum and average metrics. The exception is TAGS, which again performs worse

than the baseline, though not markedly so.

We consider now the remaining three tasks in LBF, with a fully-observable, 15×15

grid: 15x15-3p-5f, 15x15-4p-3f, and 15x15-4p-5f. We recall that MADDPG

performed particularly poorly in these larger, more-complex LBF situations, according

to the benchmarking paper by Papoudakis et al. [2021]. The training curves for each of

these tasks is given in Figure 5.2.

We notice here significant improvements over the baseline. Yet again, TAGS

markedly underperforms, both in maximum and average returns; but the other es-

timators perform well. STGS-T and GRMCK beat the baseline in average returns

for 15x15-3p-5f and 15x15-4p-3f, and in both average and maximum returns for

15x15-4p-5f. GST is superior throughout: across all three tasks, it yields significantly

higher returns and converges faster than the baseline (and the other techniques). Indeed,

these improvements are clearly noticeable in the plots provided.

Robot Warehouse (RWARE)

Finally, we consider the RWARE environment for two tasks: tiny-2ag and tiny-4ag.

Figure 5.3 shows the returns for these two environments, over the training period.

In tiny-2ag, we see insignificant differences across the estimation techniques,

with each achieving similar maximum returns. The alternative techniques do converge

slightly faster, particularly GRMCK and GST, with marginally higher average returns,

but not by much.

In tiny-4ag, we see the most significant improvements yet. Barring TAGS, which

somewhat underperforms, we notice substantial improvements from the other proposed

estimators, for both average and maximum returns. GST triumphs once more, achieving

1.5 times the maximum returns of the baseline, and over 2 times the average returns.

This is again clear in the plot, in Figure 5.3b.

Chapter 5. Experimental Results & Discussion 33

Return

Step

GSTSTGS-TSTGS-1 TAGS GRMCK

0 2M 4M 6M

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) lbf-15x15-3p-5f

Return

Step

GSTSTGS-TSTGS-1 TAGS GRMCK

0 2M 4M 6M

0

0.2

0.4

0.6

0.8

(b) lbf-15x15-4p-3f

Return

Step

GSTSTGS-TSTGS-1 TAGS GRMCK

0 2M 4M 6M

0

0.1

0.2

0.3

0.4

0.5

(c) lbf-15x15-4p-5f

Figure 5.2: Evaluation returns for three LBF tasks (15× 15) over the training period,

where the shaded region indicates the standard error as calculated over 5 seeds.

Chapter 5. Experimental Results & Discussion 34

Return

Step

GSTSTGS-TSTGS-1 TAGS GRMCK

0 2M 4M 6M

0

0.5

1

1.5

(a) rware-tiny-2ag

0 2M 4M 6M

0

1

2

3

4

Return

Step

GSTSTGS-TSTGS-1 TAGS GRMCK

(b) rware-tiny-4ag

Figure 5.3: Evaluation returns for two RWARE tasks (tiny grid) over the training period,

where the shaded region indicates the standard error as calculated over 5 seeds.

Discussion

This section presented the results from training MADDPG with each of the proposed

gradient estimation techniques, across 11 tasks from three environments. In some tasks,

particularly the more straightforward ones (e.g. MPE, or LBF with 8×8 grid-size), the

alternative techniques do not make a significant difference to the returns achieved. We

suspect this is because informative gradients are not as crucial in simple tasks. That is,

the gradient estimation is not a problematic aspect of the training, and limitations arise

elsewhere in the mechanics of MADDPG.

Interestingly, in some of the more challenging tasks, particularly in LBF with a

grid-size of 15×15 and tiny-4ag in RWARE, we see significant improvements. We

note that simply lowering the temperature (and hence, the gradient estimator’s bias), as

in STGS-T, can improve the results somewhat—supporting the hypothesis that the bias

introduced by the GS is a problem for MADDPG. The Rao-Blackwellisation procedure

of GRMCK also sees better returns and faster convergence. Much better than these,

Chapter 5. Experimental Results & Discussion 35

though, is the GST. With this estimator, we consistently see marked improvements

across the two return metrics, and these are statistically significant.

Though a lower temperature seems to yield better returns, our results suggest that

annealing the temperature, as in TAGS, performs poorly. This may be due to the

coupling of exploration and exploitation, as highlighted earlier, but more investigation

is required. Alternatively, these bad results may simply be the hyperparameters chosen—

the annealing start and end points were taken from the advice of Huijben et al. [2022].

It is conceivable that using lower values here may yield better returns, especially

considering the improvements seen with STGS-T. Future work could also explore using

alternative annealing schemes, or annealing with a different underlying estimator—e.g.

one could try a temperature-annealed GST.

From these results, considering both the maximum returns achieved and the time to

convergence, we note that alternative gradient estimation techniques can indeed yield

better returns when incorporated into MADDPG—particularly the recently-proposed

GST, from Fan et al. [2022].

5.2 Compute Time

We now consider the computational requirements for each of the algorithms, using the

toy-problem outlined earlier. Recall that we perform these tests for three classes of

estimator: STGS (which accounts for STGS-1, STGS-T, and TAGS); GRMC (with

three different K values); and GST. Table 5.2 shows the outcome of these tests.

We notice firstly that STGS scales well with dimensionality—the computational

overhead when increasing the dimension does not change significantly. Even in the

high-dimensional case of 1000, the technique is only marginally slower. These benefits

are common to the baseline STGS-1 approach, as well as the proposed techniques of

STGS-T and TAGS.

Next, we see that GRMCK is at least three times slower than the baseline approach.

Moreover, using a larger K value does, understandably, increase the computational

burden of the relaxation. Though this is not substantial for low-dimensional inputs, for

higher-dimensional problemsx, K has a marked impact—e.g. with K = 50, computation

slows down considerably, becoming 40 times slower than the baseline for an input

dimension of 1000.

The computational burden of GST sits somewhat in-between the baseline, STGS,

and the GRMCK approach. Importantly, though, this method also scales well with

Chapter 5. Experimental Results & Discussion 36

Table 5.2: Time-per-relaxation, in µs, for the three classes of gradient estimators, when

using logits of various dimensionality as input. Results are given over a 95% confidence

interval from 5 different logit instances, where each procedure is repeated 10 000 times.

Underneath each metric, using round brackets, (·), we indicate how much slower the

alternative techniques are, when compared to the baseline STGS.

Estimator→

↓ Dimensionality
STGS GRMC-1 GRMC-10 GRMC-50 GST

3 135.28±0.19
(1.0)

445.91±11.38
(3.3)

446.65±0.86
(3.3)

486.36±1.7
(3.6)

357.56±1.04
(2.64)

5 135.65±0.51
(1.0)

438.52±0.63
(3.23)

446.66±0.7
(3.29)

501.9±1.16
(3.7)

356.95±0.6
(2.63)

10 135.83±0.48
(1.0)

438.95±1.01
(3.23)

451.65±0.82
(3.33)

531.97±0.45
(3.92)

356.52±0.55
(2.62)

50 134.05±0.89
(1.0)

440.46±1.01
(3.29)

484.77±1.29
(3.62)

765.56±2.09
(5.71)

356.77±1.77
(2.66)

100 139.23±0.25
(1.0)

455.54±2.97
(3.27)

520.06±0.78
(3.74)

1055.18±4.16
(7.58)

359.26±1.26
(2.58)

1000 154.17±0.45
(1.0)

533.12±1.01
(3.46)

1060.74±2.92
(6.88)

6171.59±8.67
(40.03)

386.57±1.36
(2.51)

dimensionality, staying at just over 2.5 times slower than the baseline, irrespective of

the input size. This is an attractive property.

From these results, and the insights drawn from the previous section, we can draft

general guidelines for choosing an alternative estimator: if minimising the computa-

tional burden is paramount for a given problem, it may be worth using the STGS-T, for

it has the same overhead as the STGS-1, and it does yield improvements in both the

achieved returns and convergence time. However, if one can afford a more expensive

relaxation procedure, the GST is a good fit—it is somewhat slower, but the benefits are

significant. Since GRMCK is more expensive than the GST, yet usually yields lower

returns, it does not seem like a sensible option as an estimator in either case. Granted,

it could be that better performance comes from increasing K further (e.g. Paulus et al.

[2021] use K = 1000 in some of their experiments), but the computational burden will

only worsen in such a case, and this is undesirable. TAGS, as it was presented here,

should not be used.

Chapter 5. Experimental Results & Discussion 37

5.3 Gradient Variance

We have previously seen marked improvements in some tasks when using the proposed

gradient estimators, particularly the GST. We now stimulate further discussion by pre-

senting a cursory look into why. For this, we reconsider the LBF task of 15x15-4p-5f,

and retrain with two algorithms: the baseline STGS-1, and the best performing alterna-

tive, GST. Figure 5.4 shows the variance of the gradients across mini-batches, for each

of the layers in the policy networks, over the course of the training.

la
ye

r
0

la
ye

r
1

la
ye

r
2

2M 4M 6M

2e-5

0

4e-5

6e-5

8e-5

Variance

Steps 2M 4M 6M

1e-5

0

2e-5

3e-5

4e-5

Variance

Steps

2M 4M 6M

1e-5

0

2e-5

3e-5

4e-5

5e-5

Variance

Steps 2M 4M 6M

5e-6

0

10e-6

15e-6

Variance

Steps

2M 4M 6M

1e-4

0

2e-4

3e-4

4e-4

5e-4

Variance

Steps 2M 4M 6M

5e-6

0

10e-6

15e-6

20e-6

Variance

Steps

GSTSTGS-1

grad(weight) grad(bias)

Figure 5.4: Plots showing the gradient variance (left: gradients of weight parameters,

right: gradients of bias parameters), for each layer in the policy networks, for the

15x15-4p-5f task in LBF. The results are aggregated across the 4 agents in this task—

the shaded region indicates the maximum and minimum values across agents, the solid

line indicates the mean.

Immediately, we notice a trend in these graphs—the variance of the gradients,

taken across a mini-batch, increases more rapidly for the GST algorithm than those for

the baseline. As argued earlier, though not definitive, such results indicate that more

informative gradients are being propagated through the policy networks. Informative

gradients, in turn, allow the algorithm to achieve higher returns and converge faster—as

evidenced in Figure 5.2c.

Chapter 6

Conclusion

6.1 Summary

This project explored the impact of the Gumbel-Softmax (GS) reparameterisation on

MADDPG when applied to discrete-action environments. This was done by first present-

ing the necessary theoretical foundations, and framing the problem in the context of the

broader literature. Thereafter, we looked closely at the GS itself, and discrete gradient

estimation more generally, highlighting the key concepts therein. After synthesising a

handful of candidate GS alternatives, a select-few methods were implemented into the

MADDPG algorithm. These methods were tested on a suite of 11 MARL tasks across

three environments, and a variety of metrics were analysed.

On some of the tasks—particularly the simpler ones, where MADDPG already

performed well—no significant changes were observed, in terms of returns achieved and

the speed to convergence. On other tasks though, particularly in the more challenging

ones, substantial improvements occurred. It was found that even an easy change

to the original GS estimator—simply lowering the temperature parameter—yielded

good results. The proposed temperature-annealing scheme in TAGS, however, was

shown to be a bad choice for the estimator—though we acknowledge a different set of

hyperparameters may have helped here. The GRMC estimator, presented by Paulus

et al. [2021] showed promising results, but was hindered by a below-par computational

burden. Finally, far superior to the other methods, was the GST estimator, presented

by Fan et al. [2022]. This method achieved the best results across a range of tasks, with

higher returns and faster convergence, when compared to the original GS. Though it did

introduce additional computational burden, the method nonetheless scaled well with

dimensionality, and is certainly a viable technique for many use-cases.

38

Chapter 6. Conclusion 39

We are now in a good position to support the suggestions made by Papoudakis et al.

[2021] in their benchmarking paper. Based on the empirical data observed, we agree

that the bias of the GS method is indeed problematic for MADDPG. As a result, by

improving the estimator used—i.e. by lowering its bias—we can improve the returns

achieved by MADDPG. To answer our original question, then: yes, alternative discrete

gradient-estimation techniques can improve the performance of MADDPG in discrete

grid-worlds.

Notice the benefit of such an outcome. We can take the extant MADDPG algorithm,

replace only the gradient estimation technique—that is, swap out, e.g., the GS for the

GST, and leave everything else the same—and the resulting performance may likely

improve. Though our algorithm becomes slightly more expensive computationally, we

witness faster convergence and higher returns, with minimal development overhead.

6.2 Future Work

Many avenues of future work extend from this project—we highlight a handful here.

Firstly, it would be useful to evaluate the performance of the proposed algorithms

on a wider variety of tasks—in particular, the results in RWARE were promising but

distinctly limited, with only two tasks tested. Moreover, only co-operative tasks were

tested here, and adversarial configurations should be explored too.

Secondly, much more investigation ought to be done into why the alternative tech-

niques are boasting better performance. Though an interesting foray, the analysis into

the gradient variance was just a first step. Future research should continue to focus on

the mechanics of the algorithms, and probe at various points.

Thirdly, the core MADDPG algorithm designed for this project did not incorporate

various extensions suggested in the literature, e.g. parameter sharing. Combining the

benefits observed here with other strong extensions elsewhere would be an interest-

ing exercise. Furthermore, a wider hyperparameter search, now with the alternative

estimators involved too, may be helpful.

Finally, we note that only two alternative methods from the literature were presented

here—the GRMC and the GST. Though sufficient for our analysis, it would be useful

to explore the other options synthesised from the literature. Some of these, though far

more complex, boast many attractive properties, and may prove to be even more fruitful.

This project aimed to be a doorway for future investigation, and based on the results

observed, it seems to be an inviting one.

Bibliography

Stefano V. Albrecht and Subramanian Ramamoorthy. A game-theoretic model and

best-response learning method for ad hoc coordination in multiagent systems. In

Proceedings of the 2013 International Conference on Autonomous Agents and Multi-

Agent Systems, AAMAS ’13, page 1155–1156, Richland, SC, 2013. International

Foundation for Autonomous Agents and Multiagent Systems. ISBN 9781450319935.

Stefano V. Albrecht and Subramanian Ramamoorthy. Exploiting causality for selective

belief filtering in dynamic bayesian networks. Journal of Artificial Intelligence

Research, 55:1135–1178, 2016.

Evgeny Andriyash, Arash Vahdat, and Bill Macready. Improved Gradient-Based

Optimization Over Discrete Distributions. arXiv:1810.00116 [cs, stat], June 2019.

David Barber. Bayesian reasoning and machine learning. Cambridge University Press,

2012.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propa-

gating gradients through stochastic neurons for conditional computation. CoRR,

abs/1308.3432, 2013. URL http://arxiv.org/abs/1308.3432.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal

Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Hen-

rique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter,

Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan

Zhang. Dota 2 with large scale deep reinforcement learning. CoRR, abs/1912.06680,

2019. URL http://arxiv.org/abs/1912.06680.

David Blackwell. Conditional expectation and unbiased sequential estimation. The

Annals of Mathematical Statistics, pages 105–110, 1947.

40

http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1912.06680

Bibliography 41

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On

the properties of neural machine translation: Encoder-decoder approaches. arXiv

preprint arXiv:1409.1259, 2014.

Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Shared Experience Actor-

Critic for Multi-Agent Reinforcement Learning. In Advances in Neural Information

Processing Systems, volume 33, pages 10707–10717. Curran Associates, Inc., 2020.

Xiangxiang Chu and Hangjun Ye. Parameter sharing deep deterministic policy gradient

for cooperative multi-agent reinforcement learning. arXiv preprint arXiv:1710.00336,

2017.

Morris H. DeGroot and Mark J. Schervish. Probability and Statistics International

Edition. Pearson Education, Limited, 2011. ISBN 9780321709707.

Alek Dimitriev and Mingyuan Zhou. CARMS: Categorical-Antithetic-REINFORCE

Multi-Sample Gradient Estimator. In Advances in Neural Information Processing

Systems, volume 34, pages 13217–13229. Curran Associates, Inc., 2021.

Wei Du and Shifei Ding. A survey on multi-agent deep reinforcement learning: From the

perspective of challenges and applications. Artificial Intelligence Review, 54(5):3215–

3238, June 2021. ISSN 0269-2821, 1573-7462. doi: 10.1007/s10462-020-09938-y.

Ting-Han Fan, Ta-Chung Chi, Alexander I. Rudnicky, and Peter J Ramadge. Training

discrete deep generative models via gapped straight-through estimator. In Kamalika

Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,

editors, Proceedings of the 39th International Conference on Machine Learning,

volume 162 of Proceedings of Machine Learning Research, pages 6059–6073. PMLR,

17–23 Jul 2022. URL https://proceedings.mlr.press/v162/fan22a.html.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2022. in

preparation.

Peter W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Communi-

cations of the ACM, 33(10):75–84, oct 1990. doi: 10.1145/84537.84552.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

https://proceedings.mlr.press/v162/fan22a.html
http://www.deeplearningbook.org

Bibliography 42

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud.

Backpropagation through the Void: Optimizing control variates for black-box gradient

estimation. ICLR 2018, 2018.

Evan Greensmith, Peter Bartlett, and Jonathan Baxter. Variance reduction techniques

for gradient estimates in reinforcement learning. In T. Dietterich, S. Becker, and

Z. Ghahramani, editors, Advances in Neural Information Processing Systems, vol-

ume 14. MIT Press, 2001. URL https://proceedings.neurips.cc/paper/2001/file/

584b98aac2dddf59ee2cf19ca4ccb75e-Paper.pdf.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased

backpropagation for stochastic neural networks. In Yoshua Bengio and Yann LeCun,

editors, 4th International Conference on Learning Representations, ICLR 2016, San

Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL

http://arxiv.org/abs/1511.05176.

Caglar Gulcehre, Sarath Chandar, and Yoshua Bengio. Memory augmented neural

networks with wormhole connections. arXiv preprint arXiv:1701.08718, 2017.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applica-

tions: a series of lectures, volume 33. US Government Printing Office, 1954.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent con-

trol using deep reinforcement learning. In International conference on autonomous

agents and multiagent systems, pages 66–83. Springer, 2017.

Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic programming

for partially observable stochastic games. In Proceedings of the 19th National

Conference on Artifical Intelligence, AAAI’04, page 709–715. AAAI Press, 2004.

ISBN 0262511835.

Iris A.M. Huijben, Wouter Kool, Max Benedikt Paulus, and Ruud JG Van Sloun. A

Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in

Machine Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,

pages 1–1, 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3157042.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-

Softmax. ICLR 2017, 2017.

https://proceedings.neurips.cc/paper/2001/file/584b98aac2dddf59ee2cf19ca4ccb75e-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/584b98aac2dddf59ee2cf19ca4ccb75e-Paper.pdf
http://arxiv.org/abs/1511.05176

Bibliography 43

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, 4:237–285, may 1996. doi: 10.1613/jair.

301.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders.

Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

Jack Kleijnen and Reuven Y. Rubinstein. Optimization and sensitivity analysis of

computer simulation models by the score function method. European Journal of

Operational Research, 88(3):413–427, 1996. URL https://EconPapers.repec.org/

RePEc:eee:ejores:v:88:y:1996:i:3:p:413-427.

Wouter Kool, Herke van Hoof, and Max Welling. Estimating Gradients for Discrete

Random Variables by Sampling without Replacement. ICLR 2020, 2020.

Matt J. Kusner and José Miguel Hernández-Lobato. Gans for sequences of discrete

elements with the gumbel-softmax distribution, 2016. URL https://arxiv.org/abs/

1611.04051.

Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. Reparameterization Gradient for

Non-differentiable Models. In Advances in Neural Information Processing Systems,

volume 31. Curran Associates, Inc., 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-

forcement learning. In ICLR 2016, January 2016.

Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in

policy optimization - an empirical study on continuous control. In International

Conference on Learning Representations, 2021. URL https://openreview.net/forum?

id=yr1mzrH3IC.

Guy Lorberbom, Andreea Gane, Tommi Jaakkola, and Tamir Hazan. Direct Optimiza-

tion through argmax for Discrete Variational Auto-Encoder. In Advances in Neural

Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

https://EconPapers.repec.org/RePEc:eee:ejores:v:88:y:1996:i:3:p:413-427
https://EconPapers.repec.org/RePEc:eee:ejores:v:88:y:1996:i:3:p:413-427
https://arxiv.org/abs/1611.04051
https://arxiv.org/abs/1611.04051
https://openreview.net/forum?id=yr1mzrH3IC
https://openreview.net/forum?id=yr1mzrH3IC

Bibliography 44

Ryan Lowe, Wu Yi, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-

Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In Advances

in Neural Information Processing Systems, volume 30, 2017.

Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. Advances in neural

information processing systems, 27, 2014.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables. ICLR 2017, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement

Learning. NIPS Deep Learning Wokrshop, December 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Meth-

ods for Deep Reinforcement Learning. In Proceedings of The 33rd International

Conference on Machine Learning, pages 1928–1937. PMLR, June 2016.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo

Gradient Estimation in Machine Learning. Journal of Machine Learning Research,

21(132):1–62, 2020. ISSN 1533-7928.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language

in multi-agent populations. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32, 2018.

Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.

URL probml.ai.

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V. Al-

brecht. Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning.

arXiv:1906.04737 [cs, stat], June 2019.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht.

Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooper-

ative Tasks. Proceedings of the Neural Information Processing Systems Track on

Datasets and Benchmarks, 1, December 2021.

probml.ai

Bibliography 45

Max B. Paulus, Chris J. Maddison, and Andreas Krause. Rao-Blackwellizing the

Straight-Through Gumbel-Softmax Gradient Estimator. ICLR 2021, 2021.

Adeel Pervez, Taco Cohen, and Efstratios Gavves. Low bias low variance gradient

estimates for boolean stochastic networks. In Hal Daumé III and Aarti Singh, editors,

Proceedings of the 37th International Conference on Machine Learning, volume 119

of Proceedings of Machine Learning Research, pages 7632–7640. PMLR, 13–18 Jul

2020. URL https://proceedings.mlr.press/v119/pervez20a.html.

Andres Potapczynski, Gabriel Loaiza-Ganem, and John P Cunningham. Invertible

Gaussian Reparameterization: Revisiting the Gumbel-Softmax. In Advances in

Neural Information Processing Systems, volume 33, pages 12311–12321. Curran

Associates, Inc., 2020.

Jason Tyler Rolfe. Discrete Variational Autoencoders. ICLR 2017, 2017.

Julien Roy, Paul Barde, Félix Harvey, Derek Nowrouzezahrai, and Chris Pal. Promoting

coordination through policy regularization in multi-agent deep reinforcement learning.

Advances in Neural Information Processing Systems, 33:15774–15785, 2020.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent

Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Grae-

pel, Timothy Lillicrap, and David Silver. Mastering Atari, Go, chess and shogi by

planning with a learned model. Nature, 588(7839):604–609, December 2020. ISSN

0028-0836, 1476-4687. doi: 10.1038/s41586-020-03051-4.

L. S. Shapley. Stochastic Games. Proceedings of the National Academy of Sciences, 39

(10):1095–1100, October 1953. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.39.

10.1095.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller. Deterministic Policy Gradient Algorithms. In Proceedings of the 31st

International Conference on Machine Learning, pages 387–395. PMLR, January

2014.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van

den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya

Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,

https://proceedings.mlr.press/v119/pervez20a.html

Bibliography 46

and Demis Hassabis. Mastering the game of Go with deep neural networks and tree

search. Nature, 529(7587):484–489, January 2016. ISSN 0028-0836, 1476-4687.

doi: 10.1038/nature16961.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen

Schmidhuber. Training agents using upside-down reinforcement learning. arXiv

preprint arXiv:1912.02877, 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge,

Massachusetts, second edition edition, 2018. ISBN 978-0-262-03924-6.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy

Gradient Methods for Reinforcement Learning with Function Approximation. In

Advances in Neural Information Processing Systems, volume 12. MIT Press, 1999.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-

Dickstein. REBAR: Low-variance, unbiased gradient estimates for discrete latent

variable models. In Advances in Neural Information Processing Systems, volume 30.

Curran Associates, Inc., 2017.

Andreas Veit and Serge J. Belongie. Convolutional networks with adaptive inference

graphs. International Journal of Computer Vision, 128:730–741, 2019.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew

Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,

Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets,

Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James

Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman

Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul,

Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David

Silver. Grandmaster level in StarCraft II using multi-agent reinforcement learning.

Nature, 575(7782):350–354, November 2019. ISSN 0028-0836, 1476-4687. doi:

10.1038/s41586-019-1724-z.

M. Waltz and K. Fu. A heuristic approach to reinforcement learning control systems.

IEEE Transactions on Automatic Control, 10(4):390–398, oct 1965. doi: 10.1109/

tac.1965.1098193.

Bibliography 47

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):

279–292, 1992.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis,

King’s College, Cambridge United Kingdom, 1989.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based rein-

forcement learning. In Proceedings of the Seventeenth Conference on Uncertainty

in Artificial Intelligence, UAI’01, page 538–545, San Francisco, CA, USA, 2001.

Morgan Kaufmann Publishers Inc. ISBN 1558608001.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8(3):229–256, May 1992. ISSN 1573-

0565. doi: 10.1007/BF00992696.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik

Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert,

Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih Lin,

Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D. Thomure,

Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead, Peter Dürr,

Peter Stone, Michael Spranger, and Hiroaki Kitano. Outracing champion Gran

Turismo drivers with deep reinforcement learning. Nature, 602(7896):223–228,

February 2022. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-021-04357-7.

Shiyang Yan, Jeremy S Smith, Wenjin Lu, and Bailing Zhang. Hierarchical multi-scale

attention networks for action recognition. Signal Processing: Image Communication,

61:73–84, 2018.

Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. Breaking the deadly triad

with a target network. In International Conference on Machine Learning, pages

12621–12631. PMLR, 2021.

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and

Lawrence Carin. Adversarial feature matching for text generation. In Doina Pre-

cup and Yee Whye Teh, editors, Proceedings of the 34th International Conference

on Machine Learning, volume 70 of Proceedings of Machine Learning Research,

pages 4006–4015. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/

zhang17b.html.

https://proceedings.mlr.press/v70/zhang17b.html
https://proceedings.mlr.press/v70/zhang17b.html

	Acronyms & Initialisms
	Introduction
	Motivation
	Goals
	Structure

	Foundations
	Primer on Gradient Estimation
	Reinforcement Learning Background
	Deterministic Policy Gradient Methods
	MADDPG Implementation Details

	Discrete Gradient Estimation
	The Gumbel-Softmax
	Available Alternatives
	Chosen Alternatives

	Experimental Methods
	Environments
	Evaluation Metrics
	Training Details

	Experimental Results & Discussion
	Returns: Maximum & Average
	Compute Time
	Gradient Variance

	Conclusion
	Summary
	Future Work

	Bibliography

