
Heriot-Watt University

Masters Thesis

Exploration in Multi-Agent
Deep Reinforcement Learning

Author:

Filippos Christianos

Supervisor:

Dr. Stefano Albrecht

Dr. Frank Broz

A thesis submitted in fulfilment of the requirements

for the degree of MScR.

in the

School of Mathematical and Computer Sciences

August 2019

http://www.hw.ac.uk
https://www.edinburgh-robotics.org/students/filippos-christianos
http://www.macs.hw.ac.uk

Declaration of Authorship

I, Filippos Christianos, declare that this dissertation is my own original

work that is being submitted to Heriot-Watt University, Scotland in partial

of the Degree of Master of Science in Robotics and Autonomous Systems. I

acknowledge that the original work that is being submitted to Heriot-Watt

University has properly been cited and referenced. Some elements of this

work may have already been submitted to Heriot-Watt University as part of

the dissertation preparatory work under Robotics Research Report (B31AP)

and/or Robotics Research Proposal (B31AT). It has not been submitted to

any other university or institute of higher learning.

Signed:

Date: 15th August 2019

i

ii

Abstract
Much emphasis in reinforcement learning research is placed on exploration,

ensuring that optimal policies are found. In multi-agent deep reinforce-

ment learning, efficiency in exploration is even more important since the

state-action spaces grow beyond our computational capabilities. In this

thesis, we motivate and experiment on coordinating exploration between

agents, to improve efficiency. We propose three novel methods of increas-

ing complexity, which coordinate agents that explore an environment. We

demonstrate through experiments that coordinated exploration outperforms

non-coordinated variants.

Contents

Declaration of Authorship i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

Abbreviations vii

Symbols viii

1 Introduction 1

1.1 Thesis Outline . 3

2 Review of the Literature 4

2.1 Single Agent Deep Reinforcement Learning 4

2.2 Multi-agent Deep Reinforcement Learning 6

2.3 Exploration through Bayesian Reinforcement Learning . . . 8

2.3.1 Model-Based BRL: Using Bayes-Adaptive MDPs . . 8

2.3.2 Model-Free BRL . 11

3 Technical Background 13

3.1 Tabular Approaches to Reinforcement Learning 13

3.1.1 Markov Decision Processes 14

3.1.1.1 Partially Observable MDPs 16

3.1.2 Temporal Difference 17

3.1.3 Exploration . 18

3.2 Deep Reinforcement Learning 19

3.3 Multi-agent Reinforcement Learning 21

3.4 A Short Summary of the Terminology 25

4 Methods 26

iii

Contents iv

4.1 Centralising Exploration . 26

4.2 Approximate Bayesian Actors for Exploration in MAS . . . 30

4.3 Extending to Auto-regressive Joint Exploration 32

4.3.1 Specifying the Order of Action Generation 36

5 Experiments 38

5.1 Centralised ε-greedy in Prisoners Dilemma 38

5.2 A Harder Task: Level Based Foraging 41

5.3 Improving Performance with Thomson Sampling 46

5.4 Evaluating Auto-regressive Joint Exploration 49

5.5 Computational Requirements 53

6 Conclusion 54

Bibliography 56

List of Figures

3.1 An example MDP with three states and two actions. 14

3.2 A Deep Q Network architecture 19

3.3 The deep Actor-Critic architecture 20

4.1 The reward table of the Prisoner’s Dilemma 27

4.2 Critic Network architecture for MADDPG-AR 34

4.3 Actor Network architecture for MADDPG-AR 34

4.4 Coordinated Actor Network architecture for MADDPG-AR . 34

4.5 Coordinated Actor Network Sequence for MADDPG-AR . . 35

5.1 Performance of two IQL pairs of agents in IPD 40

5.2 Distribution of joint actions during exploration in IPD . . . 40

5.3 A visualisation of the level based foraging domain 41

5.4 Performance over training time in the level-based foraging
task with two players . 43

5.5 Performance over training time, in the cooperative variants
of level-based foraging task with two players. 44

5.6 Performance of Thomson Sampling over training time, in the
level-based foraging task with two players 47

5.7 Performance of Thomson Sampling over training time, in the
cooperative variants of level-based foraging task with two
players . 48

5.8 Evaluation of the decentralised policies vs coordinated policies 50

5.9 Performance over training time, of MADDPG-TS and MADDPG-
AR exploration. 51

v

List of Tables

5.1 Parameters used for the IPD experiments and centralised vs.
decentralised ε-greedy . 39

5.2 The evaluation parameters in all experiments of the level-
based foraging environment 45

5.3 Hyperparameter combinations tested for the two ε-greedy
algorithms . 46

5.4 Hyperparameters searched for the Auto-regressive exploration
algorithm . 50

5.5 A summary of the maximum performance of all algorithms
and environments tested . 52

5.6 Iterations per second for each of our tested algorithms 52

vi

Abbreviations

BA-MDP Bayes Adaptive MDP

BRL Bayesian Reinforcement Learning

DDPG Deep Deterministic Policy Gradient

DQN Deep Q Network

GP Gaussian Process

IPD Iterated Prisoners Dilemma

IQL Independent Q Learning

MADDPG Multi-Agent DDPG

MADDPG-AR MADDPG with Auto Regressive Exploration

MADDPG-TS MADDPG with Thomson Sampling Exploration

MAL Multi-Agent Learning

MARL Multi-Agent Reinforcement Learning

MAS Multi-Agent Systems

MDP Markov Decision Process

PO-MDP Partially Observable MDP

RL Reinforcement Learning

TD Temporal Difference

vii

Symbols

s, s′ States

o, o′ Observations

x Features (deep RL)

a Action

r Reward

γ Discount factor

S Set of non-terminal states

A Set of all available actions

Pa(s, s
′) Transition probability

Ra(s, s
′) Reward function

υπ(s) Value function

qπ(s, a) Action-value function

Q Output of Q network (Q-value)

π Policy

µ Deterministic policy

π(a|s) Probability a policy π selecting action a when in state s

Gt Return following time t

Jθ Performance measure of policy πθ

viii

Chapter 1

Introduction

Learning from interactions is presumably the way humans accumulate knowl-

edge of their environment and understand what behaviours are acceptable

and rewarding. Reinforcement Learning (RL), a topic widely studied, closely

resembles this type of learning; maximising rewards instead of being pro-

vided with correct answers or trying to uncover hidden structures in data.

Recently, RL has received renewed attention by employing deep networks

and solving several hard problems [31, 44, 45, 50].

Multi-agent RL (MARL), attempts to extend learning to environments

where multiple agents learn and act simultaneously. The presence of other

agents complicates learning but is realistic, and found in many real-world

applications such as autonomous driving [27, 42], robotic warehouses [53],

and even video games [50]. The abundance of applications makes it a topic

of great interest for researchers.

However, MARL faces additional challenges in the form of non-stationarity,

multiple equilibria, and the credit assignment problem [8, 33]. In deep

RL settings, where value functions are approximated, such problems are

exacerbated [24]. Recent research on the topic of deep MARL has made an

advance in solving these issues [14, 15, 29, 37].

1

Chapter 1 Introduction Filippos Christianos

In this thesis, we focus on an essential aspect of RL, exploration. Exploration

is part of an RL algorithm that focuses on gathering information about

the environment. By trying new actions in circumstances not encountered

before, the agent observes and then learns transitions to new states and

rewards. Exploration repeatedly encounters the dilemma of selecting an

action that has worked well in the past, versus an action that now seems

inferior, but might prove to be better.

With the increasingly large state spaces that deep RL can handle, exploration

has an even more critical role. State spaces in robotics, autonomous driving,

or other complicated environments, are too large to be thoroughly visited.

Therefore, exploration must be efficient and focus on actions that have the

potential to be optimal.

As part of our efforts to improve exploration, we propose three novel al-

gorithms for multi-agent environments and demonstrate that exploration

dramatically affects performance in deep MARL. Those algorithms operate

under the paradigm of coordinating exploration during the learning phase

but learning a decentralised policy for the execution.

To evaluate our methods, we implement a multi-agent domain: level-based

foraging. It is a challenging domain for MARL, requiring agent coordination

for successful completion. Agents are required to navigate and operate in a

grid environment and are often required to cooperate with others. In this

domain, we demonstrate the performance of our methods.

Such coordination of agents could in the future be extended to solve real-

world problems. For instance, our interest focuses on robotic warehouses

where the tasks, perhaps similarly to level-based foraging, includes coor-

dination for the collection and delivery of items. Currently, warehouses

with multiple robots operate under a centralised controller. We hope that

research in MARL might provide an alternative, decentralised and thus

more scalable, way of planning in such situations.

2

Chapter 1 Introduction Filippos Christianos

1.1 Thesis Outline

This thesis consists of six chapters. The second chapter presents a thorough

review of the literature in: i. single-agent deep RL (Sec. 2.1), ii. multi-agent

deep RL (Sec. 2.2), and iii. exploration through Bayesian RL (Sec. 2.3).

Chapter 3 introduces concepts, notations or algorithms that will be used

in the methods we propose in Chapter 4. Next, Chapter 5 presents the

evaluation of our methods through experiments. Chapter 6 concludes.

3

Chapter 2

Review of the Literature

2.1 Single Agent Deep Reinforcement

Learning

DQN has been shown to be an unstable algorithm, meaning more training

does not always equal better performance. It is often the case that the

performance of DQN agents is constantly monitored throughout the training,

and only the best performing snapshots are kept. This instability is attributed

to an overestimation bias introduced with the argmax operator. Double

DQN (DDQN) [23] attempts to solve this with a second value network

that is used to cross-validate the Q-values. Hasselt et al. [23] show that

the overestimation of Q-values is indeed happening in DQN networks and

causes the observed instability and the proposed DDQN outperforms them.

Until 2016, deep RL was implemented with the use of an experience replay

(Sec. 3.4). This technique was used to counteract the temporal correlation

of collected samples but had several drawbacks. By definition, using an

experience replay limited deep RL algorithms to off-policy learning. Also,

especially when the state representation was an image, a lot of memory

and computing power was needed. Mnih et al. [30], with the Asynchronous

Advantage Actor-Critic (A3C) algorithm, replace the experience replay

4

Chapter 2 Review of the Literature Filippos Christianos

by training simultaneously on several parallel threads. The simultaneous

training breaks the correlation of the samples and also enables the use of

on-policy algorithms.

While typically on-policy algorithms are not as sample efficient as the off-

policy equivalent, the advantage of A3C was the capacity to use of all the

machine cores (16 in the original paper). This meant that several environ-

ments and gradient calculations were running simultaneously, significantly

decreasing the real-time training requirements. For the first time, agents

solving Atari games were being trained in just a few hours on a typical

CPU, without even the need of GPUs.

The above algorithms modelled the policy as π(·|s), meaning a probability

distribution over the action. Deterministic policies µ(s) directly output

an action when given the state, and follow the policy gradient to improve

performance. Deep Deterministic Policy Gradient (DDPG), introduced by

Lillicrap et al. [28], combines DQN with the deterministic policy gradients

and extends it to continuous actions. Continous action space is an interesting

extension since it allows for many real-life applications like robotics or

autonomous vehicles.

Twin Delayed DDPG (TD3) [16] addresses similar issues to DDQN, such

as the overestimation bias. Fujimoto et al. [16], propose the addition of

a second value network that learns independently and uses the minimum

of the two when formulating the Bellman target. Noticing that similar

actions, in continuous action space, should give similar rewards, Fujimoto

et al. also add noise to the target action, effectively smoothing the action

values. While TD3 appears to be a collection of empirical tricks rather

than having a concrete mathematical formulation, it shows improvements

in performance over DDPG and is considered state of the art on continuous

action environments.

A newer algorithm, Soft Actor-Critic (SAC), was proposed by Haarnoja

et al. [22] and is interesting to us since it naturally encompasses exploration.

5

Chapter 2 Review of the Literature Filippos Christianos

SAC adds an entropy term to the Actor’s training, and the Actor learns

to achieve high rewards while also maximising exploration. Haarnoja et al.

claims that this is one of the most stable variations of deep RL, achieving

the same results with various seeds, while also outperforming the previous

state of the art algorithms.

Until now, we listed papers that focused on adapting classical RL rules

to deep networks. A common element of off-policy deep RL algorithms

is the experience replay that remained unchanged throughout these years.

Prioritised Experience Replay (PER) [40] aimed to change that and proposed

a priority over experiences which is calculated by the difference of the

predicted and the real reward. By prioritising sampling, the network is

trained more often with experiences it does not currently predict correctly,

effectively decreasing the learning time.

Hindsight Experience Replay (HER) [5] modifies the experience replay to

tackle a different problem. As sparse rewards are a challenge in RL, HER

modifies experiences and its rewards to achieve an implicit curriculum and

learn in these settings. In essence, the goal of each episode is modified to

match what was randomly achieved, and the agent instead of having nothing

to learn learns those modified goals. Learning with such binary and sparse

rewards is very important in RL since it avoids the need to hand-engineer

reward structures.

2.2 Multi-agent Deep Reinforcement

Learning

In the previous section, we have described the current state of the art in

single-agent deep RL. The introduction of several agents adds a significant

challenge to RL because it introduces non-stationarity [33]. There are many

attempts to adapt deep RL algorithms to work in such settings, with various

6

Chapter 2 Review of the Literature Filippos Christianos

degrees of success. Fortunately, even while the Markov assumption breaks

in multi-agent settings (Sec. 3.3), RL algorithms still work sufficiently well.

Starting with a change to the experience replay, Foerster et al. [15] deal with

the non-stationarity and the instability that it introduces. Specifically, since

the critical factor to the instability is the constantly changing behaviour of

the opponents, Foerster et al. propose two methods that address it. Both

methods, marking data as obsolete as time progresses and adding a unique

fingerprint to collected experience, perform equally better when combined

with Independent DQN (IDQN).

Shortly after attempting to stabilise training with changes in the experience

replay, Foerster et al. [14] introduce the COMA algorithm. COMA adheres

to the paradigm of centralised learning - decentralised execution: agents that

are trained in a lab or simulated environment but then can act autonomously.

To achieve this, COMA uses a single and centralised Critic which takes

as an input the full state and produces Q-values for all the joint actions.

The decentralised Actor uses a counterfactual baseline that marginalises the

agent’s actions and keeps the other Q-values fixed.

QMix [37] is a newer algorithm from the same group, that relaxes some

of the hard constrains of COMA. QMix is a method that lies between

IDQN and COMA and uses Q-networks for each agent but then mixes them

monotonically using another network to generate a Qtotal network. The

centralisation of the Critic these methods proves to be very important and

provides a stable target for the actors.

Finally, MADDPG (detailed in Chapter 3) was proposed by Lowe et al. [29].

The algorithm combines DDPG with tricks that improve learning in a multi-

agent environment. The paper suggests the use of a centralised Critic, with

inputs of all actions and observations which reduces the variance of Q-values.

Also, the novelty of the paper lies to the proposed policy ensembles, where

several policies are trained for each agent and sampled during training to

minimise the non-stationarity problem. However, it is unclear how each

7

Chapter 2 Review of the Literature Filippos Christianos

component affects the performance of the algorithm, and as discussed in the

previous chapter, we have found MADDPG to work equally well without the

use of policy ensembles. In any case, it is clear that MADDPG outperforms

the independent version of DDPG and is considered state of the art in

multi-agent systems.

2.3 Exploration through Bayesian

Reinforcement Learning

This section focuses on the literature concerned with Bayesian Reinforcement

Learning (BRL) methods. In the previous sections, we discussed deep RL

methods, but we did not mention exploration. Often, deep RL makes use of

simple exploration methods. Bayesian RL, by modelling uncertainty, focuses

on efficient exploration. As of now, there is not much work in combining

Bayesian methods with deep networks (except for the work by Gal and

Ghahramani [17] which we discuss at the end of this section), and we either

focus on tabular settings or briefly cover model-free methods based on

Gaussian Processes (GPs).

2.3.1 Model-Based BRL: Using Bayes-Adaptive

MDPs

Model-based, as the name implies, consists of algorithms that create and

maintain a model of the environment. In BRL literature, we find extensions

of Markov Decision Processes (MDPs, background on MDPs can be found

in Sec. 3.1.1) which unfortunately are often intractable. As such, we discuss

methods which are meant to approximate solutions either online or offline.

Bayes-Adaptive MDPs (BA-MDPs) by Duff and Barto [11], is a model-

based approach to optimal exploration in MDPs. Specifically, the BA-MDP

8

Chapter 2 Review of the Literature Filippos Christianos

framework is designed to allow agents to reason about their uncertainty of

the underlying MDP dynamics. Formally, a BA-MDP is defined similarly to

an MDP but replaces the states with a set of hyper-states, which represent

all the possible transitions into the future. The respective transition function

models the belief of transitioning to each of the hyper-states and is often

populated with Dirichlet posteriors [11, 21].

It is important to note that in BA-MDPs, the hyper-states grow exponentially

with the horizon t, and on a fully connected underlying MDP, we can expect

|S|t states. Thus, the computational challenges are apparent and actual

solutions are tractable only within simple environments.

Computational challenges aside, this representation of MDPs offers remark-

able advantages, and most notably an optimal solution to the exploration vs

exploitation dilemma.For instance, using the Bellman equation and a t-step

horizon, we can derive the optimal value function, which if maximized with

a policy results in a Bayes-optimal policy. Bayesian inference is thus used

to select actions in an optimal way, given the existing uncertainty. Many of

the following works are trying to approximate this value function.

An algorithm that paved the way of Bayesian RL is one that builds on

Q-Learning and was proposed by Dearden et al. [10] in the ’90s. In Bayesian

Q-Learning, the actions are selected by calculating the expected value of

information on top of the expected reward. This approach does not solve the

BA-MDP, but instead, first samples MDP from posterior Dirichlet posteriors

and then solves them to create a distribution on the Q-values. Then Dearden

et al. define the value of perfect information (VPI) for a state-action pair

in a myopic manner (considering only the immediate transition). As such,

action selection is made by maximising the sum of the VPI with the Q-value.

The Beetle algorithm that is introduced by Poupart et al. [36] in 2006,

gathers a sample of hyper-states through continuous simulations of the BA-

MDP. Then, point-based backups are done, essentially solving a Partially-

Observable MDP (POMDP, Sec. 3.1.1.1) where the belief states are replaced

9

Chapter 2 Review of the Literature Filippos Christianos

by the hyper-states. This algorithm faces deteriorating computational issues

with an increasing horizon since the number of terms in the resulting poly-

nomials increases exponentially. With the use of basis functions, and bother

techniques, the issue above is mitigated. Experiments in small domains show

Beetle to work well, but for implementation in more complex systems, prior

knowledge of the domains should be used to limit the parameters.

Bayes-Adaptive MDPs can also be extended to Bayes-Adaptive POMDPs

(BA-POMDPs) as shown by Ross et al. [38]. In this work, the authors

propose this extended framework in order to tackle the domains where the

state is a hidden variable. This model helps the planning of optimal actions

which aim to concurrently identify the current state, explore the underlying

model and exploit the knowledge to acquire rewards. The transition and

observation probabilities in a BA-POMDP are considered unknown, and

their uncertainty is modelled with Dirichlet distributions. Notably, the

belief and optimal value functions are still similar to POMDPs but need

to be computed in the new extended state space. Understandably, exact

solutions over both long horizons and large state spaces are intractable and

approximate solutions are proposed.

Ross and Pineau [39] address the scalability of online methods in larger

domains. They argue that there are two main reasons which restrict BRL

methods to small domains. The first is that they need a large amount of

data to make a usable model, something which they tackle by using factored

representations of the dynamics of a system. This leads to fewer parameters

and is done with the use of dynamic Bayesian networks. The second reason

is that planning in Bayesian RL seems intractable due to the full posterior

space which should be taken into consideration (see 2.3). The authors in this

work propose the use of an online Monte Carlo algorithm, an approximating

technique which also since it is online only has to start from the current

posterior. Nevertheless, the dependency on tree structures hinders the ability

to generalise and extend to the continuous space and has issues with online

planning, as discussed above.

10

Chapter 2 Review of the Literature Filippos Christianos

More recently, Katt et al. [26] propose a Factored Bayes-Adaptive POMDP

extension (FBA-POMDP). The factorisation is possible in POMDPs due to

the conditional independence between the variables. As such, it is possible

to represent the dynamics with the reduction of parameter space more

efficiently. The authors show that the factorisation can also be similarly

applied in BA-POMDPs. Finally, they introduce a solution method based on

Monte Carlo Search Tree, which has convergence guarantees and outperforms

state of the art approaches.

Bayes-Adaptive methods such as the ones described show that principled

solutions to the exploration vs exploitation trade-off in MDPs exist. While

the state space is countably infinite, near-optimal solutions are viable and

could potentially be extended to solve more complex domains.

2.3.2 Model-Free BRL

Model-free, in contrast to Model-based approaches, do not directly model

the environment and thus do not involve planning. Instead, they learn by

trial and error, observing the results of their actions for each state. Model-

free BRL usually incorporates Gaussian Processes (GPs), which naturally

express the posteriors along with the uncertainty.

Unfortunately, modern RL needs to use vast amounts of collected data (for

example, in environments such as Atari games), and GPs currently have

very high computational requirements to process this data. As such, the use

of GPs in RL has not seen much focus. We briefly outline some of the most

advanced methods.

Gaussian Process Temporal Difference (GPTD), introduced by Engel et

al. [12], is a Bayesian approach for value function estimation in domains with

continuous state spaces. They first define a generative model for the value

function using a Gaussian prior and derive a posterior distribution. An online

sparsification is used, where the algorithm drops samples if they are not

11

Chapter 2 Review of the Literature Filippos Christianos

required to maintain an accuracy threshold1. This leads to significantly fewer

samples and thus decreased computational requirements. As the experiments

show, it manages to produce not only a value function of a continuous-space

maze but a value variance as well.

In a later work, Engel et al. [13] address the first two issues by modifying

the initial model and incorporating a discounted return process into the

value function. They also offer a SARSA extension to GPs, GPSARSA.

The proposed algorithm directly derives from the idea of extending TD

to estimate the Q values. Finally, the model-free methods discussed until

now seemed to ultimately lead towards an actor-critic implementation of

BRL [12, 13, 20]. Ghavamzadeh and Engel [19] made the first such attempt

by replacing parametric critics (e.g. [30]) using a GP for the critic.

The use of GPs for estimating uncertainty in RL is certainly appealing

and can offer theoretical guarantees; however, the computing requirements

render it unrealistic. Gal and Ghahramani [17] make use of dropout on

neural networks as a Bayesian approximation. Dropout has been extensively

used empirically in deep learning, especially in domains such as vision in

order to combat overfitting. However, Gal and Ghahramani show the link

between dropout and Bayes mathematically. Interestingly, while they mostly

focus on vision, they also show uses of dropout in single-agent RL settings

using DQN. In Sec. 4.2 we will discuss how to apply dropout in multi-agent

settings, in an Actor-Critic architecture.

1Even on these simpler environments, processing all the data is computationally
hard, further reinforcing the view that implementations in large state-space domains are
currently intractable.

12

Chapter 3

Technical Background

This chapter introduces the technical background that is used in the rest of

this thesis. Section 3.1, Tabular RL, is useful for introducing notation, as

well as basic RL concepts such as common algorithms. Next, Section 3.2,

Deep RL, presents the extension of RL to deep network settings. Finally,

multi-agent RL in Section 3.3, introduces the changes to RL when multiple

agents co-exist in an environment. Throughout this work, we keep consistent

with the notation of the majority of the RL literature and with Sutton and

Barto [47].

3.1 Tabular Approaches to Reinforcement

Learning

RL is the part of machine learning that is concerned by agents learning

through acting on an environment and observing the results of their actions.

RL is not considered supervised or unsupervised learning and instead forms

the third branch of machine learning on its own [47]. RL differs from unsuper-

vised learning since it does not try to uncover hidden structure in the data

but instead tries to maximise a reward signal. Also, in contrast to supervised

learning, the agent does not receive correct examples of behaviours.

13

Chapter 3 Technical Background Filippos Christianos

Figure 3.1: An example MDP with three states and two actions. The
transition probabilities to each state after taking an action from a state
are also displayed. Successfully transitioning to S0 from S1 and S2 rewards

5 and −1 respectively.
◦ source: waldoalvarez [CC BY-SA 4.0]

In essence, RL consists of an agent acting in an environment, optionally

creating a model by learning the underlying functions, with the goal of

learning to maximise the rewards of its actions (or learning a policy). Next,

we formulate the problem with the help of a mathematical framework,

Markov Decision Processes and present RL algorithms that learn under

those settings.

3.1.1 Markov Decision Processes

Markov Decision Processes (MDPs), an extension of Markov Chains, is a

mathematical framework for modelling sequential decision problems that

can be solved using RL. MDPs can encapsulate the process of an agent

observing the state of an environment, acting on it, receiving a reward, and

finally stochastically reaching a new state.

14

https://creativecommons.org/licenses/by-sa/4.0

Chapter 3 Technical Background Filippos Christianos

An MDP is defined by the tuple 〈S,A, Pa, Ra〉 where S is the set of states,

A is the set of actions available for each state, Pa(s, s
′) is the probability of

transitioning to state s′ from s by taking action a. Finally Ra(s, s
′)→ R is

a reward function giving the immediate reward or reinforcement received

under a transition.

The Markov property, which is satisfied by MDPs, requires future states of the

process to only depend on the current state-action tuple 〈s, a〉. Specifically,

it describes a system where the information of the current state can capture

its entire history. The Markov property is an assumption used in MDPs1 in

order to model the particular problems [21, 47].

Solving an MDP means finding the optimal policy π∗, which will yield the

maximum reward for an agent. A stochastic policy π matches states to

the probability of selecting actions. Specifically, π(a|s) is the probability of

selecting action a when the MDP is in state s and should be defined ∀a ∈ A

and ∀s ∈ S. This optimal policy can be found using Dynamic Programming

when the transition and reward probabilities are known. When those are

unknown, then the problem becomes one of RL [47], where model-based

approaches attempt to learn Pa and Ra, and model-free directly search for

a near-optimal policy.

In this thesis, we will also refer to a deterministic policy µ(s) (sometimes ref-

ered to in the literature simply as π(s)) which maps a state to a deterministic

action. Using a different symbol µ clearly differentiates between the stochas-

tic and the deterministic policies. Naturally, a deterministic policy can also

be written as a stochastic one such that ∀si ∈ S ∃ aj ∈ A : π(aj|si) = 1.

We define the value function of a state under a policy as υπ(s) as such:

υπ(s) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣ st = s

]
, ∀s ∈ S (3.1)

1As we examine later, this assumption often breaks in multi-agent systems, where the
entire interaction history is needed to model opponent behaviours.

15

Chapter 3 Technical Background Filippos Christianos

where γ ∈ [0, 1] is the discount factor, which weights results in the future

differently, and rt is the reward received in timestep t. The value function

can be explained as the expected rewards when the agent is in a state s and

will follow the policy π. Similarly, we define the value of taking an action a

while in s, qπ(s, a) as

qπ(s, a) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣ st = s, at = a

]
(3.2)

called the action value function, and denoting the expected reward when an

action is taken and then following the policy π. Due to the Markov property,

we can expand Eq. 3.1 recursively:

υπ(s) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣ st = s

]
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γυπ(s′)],∀s ∈ S
(3.3)

Eq. 3.3 is called the Bellman Equation, which again expresses the value of

a state by connecting it to future states. It is a sum over all the actions,

future states, and rewards, weighted by their respective probabilities.

Finally, we define as return the sum of rewards following time t as

Gt = rt+1 + rt+2 + . . .+ rT

3.1.1.1 Partially Observable MDPs

A well-studied generalisation of MDPs is the Partially Observable MDP or

POMDP. In this generalisation, the MDP controls the underlying system,

but the agent in the environment cannot fully observe the state of the system.

Hence we have the addition of the set of observations Ω, and the probability

16

Chapter 3 Technical Background Filippos Christianos

O(o|s′, a) of observing o when arriving in the state s′ having taken the

action a. The resulting tuple 〈S,A,Ω, Pa, O,Ra〉 defines this model.

POMDPs are often used when modelling real-life problems since they en-

compass the element of uncertainty in perception. Since the agent does not

directly observe the state of the environment, it must hold a belief for the

current state, which is updated while the agent traverses the environment. As

such, we define as belief state, a distribution over latent states. Consequently,

the uncertainty of the true state creates optimal actions that are meant

to gather information that can be later exploited [21]. Finally, policies are

mappings from belief states b to actions: π(a|b).

Nevertheless, as shown by Kaelbling et al. [25], solving POMDPs is often

intractable when there are more than a few observations, states, and actions.

Thus, approximate solutions emerged [34, 35, 46] to tackle larger domains.

Those solutions do come with the trade-off of requiring a full model of the

POMDP, which is often a strong assumption.

3.1.2 Temporal Difference

Many RL algorithms have been developed throughout the years, solving

MDPs either using Dynamic Programming or with Monte Carlo ideas.

However, it can be argued that neither managed to influence RL as much as

Temporal Difference (TD). TD methods combine Dynamic Programming

and update using previously learned estimates, with Monte Carlo, which

learns through direct interaction with the environment.

Q-Learning, a prime example of TD learning and developed in the late

’80s by Watkins [51], learns the action-value function in a tabular manner.

Watkins manages to combine optimal control and TD methods to one of

the most studied RL algorithms. A Q-Learning agent interacts with the

environment and continuously updates the action-value table using

17

Chapter 3 Technical Background Filippos Christianos

Q(st, at) = (1− α)Q(st, at) + α(rt + γmax
a
Q(st+1, a)) (3.4)

where α is the learning rate and γ the discount factor. Equipped with

this table, an agent can maximise its rewards by greedily selecting actions,

effectively learning a policy.

Learning a different policy than the one being executed to collect samples

is referred to as off-policy learning. The advantage of off-policy is that the

agent can directly learn the optimal policy. On-policy algorithms work,

as the name suggests, by improving the policy that is being executed

offering different advantages such as more steady improvement. The specific

differences between off and on policy variants are often too subtle and

environment-dependent to discuss in this thesis.

Another well known is algorithm is SARSA [47, p. 129], which resembles

Q-learning but replaces the max operator with an on-policy equivalent as

such:

Q(st, at) = (1− α)Q(st, at) + α(rt + γQ(st+1, at+1)) (3.5)

The action at+1 is the action that will be performed next under the current

policy: which makes it an on-policy algorithm.

3.1.3 Exploration

An important note here is that algorithms (e.g. Q-Learning) should not

interact with the environment exclusively with a greedy policy. Doing so,

would potentially lead to repeated execution of the same actions, and often

never seeing at all some transitions. In RL, collecting a variety of interactions

is called exploration and is critical to learning. Often, exploration is achieved

18

Chapter 3 Technical Background Filippos Christianos

Figure 3.2: A DQN network. Takes as an input the state and outputs
Q-values for all possible actions

by adding randomness to the action selection, ensuring that all state-action

transitions will be eventually visited.

The simplest exploration method is called ε-greedy. A small ε is set, and

an agent following an ε-greedy policy performs the greedy action with

probability 1− ε or a uniformly random action with probability ε.

Another, more efficient exploration method that we also use later in Chap-

ter 4, is Thomson Sampling. Thomson sampling is a heuristic for addressing

the exploration-exploitation dilemma and has been used primarily in the

multi-armed bandit problem. A Bayesian posterior P (θ | D) on the pa-

rameters θ of the model is held, while the domain is being explored and

observations D are gathered. Then the algorithm samples the parameters of

a model theta′ from the posterior and chooses an action that maximises the

expectation of the reward given the drawn parameters maxa′ E(r | a′, θ′).

3.2 Deep Reinforcement Learning

The tabular implementations of those algorithms do not scale to high

dimensions and require either simple domains or a high-level representation

of the state. Difficulty in scaling is the result of requiring to visit and

19

Chapter 3 Technical Background Filippos Christianos

Figure 3.3: The Actor-Critic architecture. Two networks are used, the
actor (or policy) network for selecting actions, and the critic (or value)

network for training the policy.

calculate the update for all individual states. In this section, we will describe

algorithms that utilise deep Neural Networks to approximate Q-values and

generalise them to similar states.

The first and most impactful example of such an algorithm is DQN [31],

which was the first deep RL algorithm to solve Atari games. Specifically,

DQN, also seen in Alg. 1, uses a network architecture that has the state as

an input and the Q values of all actions as an output (as seen in Fig. 3.2).

Therefore, the loss function, defined as

L =
1

2
(Q(s, a)− (r + γmax

a′
Q(s′, a′)))

2
(3.6)

can be minimised using a gradient optimiser over the parameters of the

network to train a network that can approximate Q-values.

Another addition to the tabular Q-learning is the experience replay, also

called replay buffer in the literature, denoted as D. During training, all

transitions are stored in a data structure, and mini-batches are drawn for

backpropagation. This technique breaks the temporal correlation between

samples and allows for more stable overall improvement. Finally, Mnih

et al. [31] add another network Q̂, the target network, that is updated to

slowly follow the Q network and acts as a more stable target.

Actor-Critic is another architecture which uses two networks (see Fig. 3.3).

The ‘Critic’ estimates the value function as discussed above, and in turn, the

‘Actor’ updates the policy as suggested by the value network. Actor-Critic

20

Chapter 3 Technical Background Filippos Christianos

Algorithm 1 DQN Algorithm

Require: Initialize replay memory D with capacity N
Require: Initialize action-value network with random weights θ
Require: Initialize target network with weights θ− = θ

1: function ε-greedy(Q)
2: with probability ε select random action at
3: otherwise select at = argmaxaQ(s, a; θ)
4: return at

5: for timestep t in every episode 1 . . .M do
6: at ← ε-greedy (Q)
7: Execute at and observe s′ r
8: Store (s, at, s

′, r) in D
9: Sample mini-batch (sj, aj, s

′
j, rj)

10: yj ←

{
rj, ifs′jis terminal

rj + γmaxa′ Q̂(s′j, a
′; θ−), otherwise

11: loss ← (yj −Q(sj, aj; θ))
2

12: Gradient descend step on loss with respect to θ
13: Every C steps θ− ← θ

methods have been shown to be more stable and perform considerably

better [30].

A well known Actor-Critic algorithm is Deep Deterministic Policy Gradient

(DDPG) [28]. This algorithm combines DQN and the tabular DPG and

learns a deterministic policy µ. The update rule of the Actor stems from

the deterministic policy gradient theorem, which solves the gradients of the

policy with respect to the value function. The algorithm, Alg. 2, is very

successful with continuous action states in deep networks. Later, we show

the multi-agent extension of this algorithm, called MADDPG.

3.3 Multi-agent Reinforcement Learning

Multi-agent Learning (MAL) concerns itself with domains where multiple

agents learn at the same time, potentially creating ever-changing behaviours

while agents try to adapt to each other. MAL, in contrast to single-agent

21

Chapter 3 Technical Background Filippos Christianos

Algorithm 2 DDPG Algorithm

Initialize replay memory D with capacity N
Initialize policy parameters θ and Q-function parameters φ
Initialize target network with weights θ̂ = θ and φ̂ = φ
Initialize 0 < τ < 1 as the target update hyperparameter

1: for timestep t in every episode 1 . . .M do
2: at ← clip(µθ(s) + ε, amin, amax), where ε ∼ N

3: Execute at and observe s′, r
4: Store (s, at, s

′, r) in D
5: if t mod Tupdate = 0 then
6: Sample mini-batch B: (sj, aj, s

′
j, rj) from D

7: yj ←

{
rj, ifs′jis terminal

rj + γQ(s′j, µθ̂(s
′
j); φ̂), otherwise

8: Qgradients ← ∇φ
1
|B|
∑

B(Qφ − yj)2
9: Gradient descend step on Qgradients with respect to φ

10: µgradients ← −∇θ
1
|B|
∑

B Qφ(s, µθ(s))
11: Gradient descend step on µgradients with respect to θ

12: φ̂ ← τ φ̂+ (1− τ)φ
13: θ̂ ← τ θ̂ + (1− τ)θ

learning, needs to work in environments where the dynamics change, often

called non-stationary. The literature of MAL usually revolves around Markov

Games, focusing mostly (but not exclusively) in zero-sum or repeated games

such as rock-paper-scissors or prisoners dilemma [43]. Like the rest of RL,

we can distinguish model-free and model-learning approaches.

Formally multi-agent systems can be represented as Markov games, an

extension of POMDPs that may include more than one agent. The definition

of a Markov game for N agents contains sets of actions A1, . . . , AN and

sets of observations O1, . . . , ON . The observations are a partial description

of the full state s ∈ S from the perspective of each agent. The transition

function S ×A1× · · · ×AN 7→ S takes as input the state and the actions of

all agents and maps to a state. Finally, each agent aims to maximize the

discounted sum
∑

t γ
trti of the individual rewards ri.

Model-based MAL tries to create a model of the opponent behaviour [4],

compute and choose the best response, and after observing the reaction,

update its model. This iteration was first introduced as fictitious play by

22

Chapter 3 Technical Background Filippos Christianos

Brown [7], and is now the basis of many model-based methods. Model-free,

by not creating models of opponents, focuses on the agent’s actions and

often ignores others entirely [41].

MAL faces many challenges [43], one of the most significant ones being the

non-stationarity [33]. Specifically, each agent updates its policy individually,

throwing off other agent’s policies, creating a vicious circle of moving targets.

Another major challenge is the credit assignment problem, being the inability

of agents to understand if they were rewarded for their actions or other

agent’s. As such, learning in such settings is more complicated and is studied

separately.

In recent years, deep multi-agent RL algorithms have been proposed to

tackle such environments, which we overview in Sec. 2.2. An algorithm that

stands out, and will be used in our thesis is Multi-Agent DDPG (MADDPG),

proposed in 2017 by Lowe et al. [29]. MADDPG is an extension of DDPG

to the multi-agent domain and is explicitly redesigned for domains requir-

ing agent coordination. The main difference between several independent

agents using DDPG is the use of centralised Critics, learning on the joint

observations and actions, and is trained by minimising the loss

L (θi) = Eo,a,r,o′
[
(Qµ

i (o, a1, . . . , an)− y)2
]
,

y = ri + γQµ′

i (o′, a′1, . . . , a
′
n)|a′j=µ′j(o′j)

(3.7)

The actors however remain decentralised in order to run independently at

execution time and are updated using

∇θiJ (µi) = Ex,a∼D

[
∇θiµi (ai|oi)∇aiQ

µ
i (x, a1, . . . , an)|ai=µi(oi)

]
(3.8)

The original MADDPG work also proposes training several policies for each

agent, called policy ensembles. However, we empirically found that this

23

Chapter 3 Technical Background Filippos Christianos

does not improve performance, and the main contribution is the use of a

centralised Critic. Another important aspect is that MADDPG has been

shown to perform well in discrete action spaces (in contrast to DDPG),

with the use of Gumbel-Softmax sampling. Specifically, this distribution is

sampled, which helps exploration, and the actions are converted to discrete

with one-hot encoding. When we refer to MADDPG from now on, we referred

to this simplified variation, also seen in Alg. 3.

Algorithm 3 MADDPG Algorithm

Initialize replay memory D with capacity N
Initialize policy θ1...n and Q-function parameters φ1...n for n agents
Initialize target network with weights θ̂i = θi and φ̂i = φi for i = 1 . . . n
Initialize 0 < τ < 1 as the target update hyperparameter

1: for timestep t in every episode 1 . . .M do
2: a ← {}
3: for i in {1 . . . n} do
4: Append ai = GumbelSoftmax(µθi) to a

5: Execute a and observe o, o′, r of all agents
6: Store (o,a,o′, r) in buffer
7: if t mod Tupdate 6= 0 then
8: Continue
9: for i in {1 . . . n} do

10: Sample mini-batch B: (o,a,o′, r) from D

11: y ←

{
ri, if o′i is terminal

ri + γQ(o′,a; φ̂i), otherwise

12: Qgradients ← ∇φi
1
|B|
∑

B(Q(o,a;φi)− y)2

13: Gradient descend step on Qgradients with respect to φi
14: µgradients ← − 1

|B|
∑

B∇aiQ(o, a1 . . . αn;φi)∇θiµ(oi; θi)
15: Gradient descend step on µgradients with respect to θi
16: φ̂i ← τ φ̂i + (1− τ)φi
17: θ̂i ← τ θ̂i + (1− τ)θi

24

Chapter 3 Technical Background Filippos Christianos

3.4 A Short Summary of the Terminology

For the convenience of the reader, we have summarised the most important

terminology that will be repeatedly used from now on (especially Chapter 4).

• Value Network: also called Critic in Actor-Critic algorithms, is the

network that learns to approximate the state-action value Q(s, a).

• Policy Network: found in Actor-Critic algorithms, directly outputs the

best action given a state (π(s) or µ(s) in DDPG).

• Target Networks: are copies of the main networks, which are slowly

updated for example by periodically copying the full parameters. They

are meant to offer a stable target when training the main networks.

• On/Off policy: are two categories of algorithms in RL. On-policy

algorithm directly train the network they use to collect data, while off-

policy may train on data collected in a different manner. Algorithms

using an experience replay are always off-policy.

• Exploration: defines the method on which we collect data when inter-

acting with the environment. Usually includes stochasticity, in order

to maximise the visited state space.

• Experience Replay: also known as Replay Buffer, is a data structure

that stores all the experiences collected by the agent. Batches of

experience are sampled and used for training, and helps break the

time-correlation of samples.

• Non-stationarity: often found in multi-agent RL, and also referred to

as the moving target, is the attribute of an environment that makes

the optimal policy change over time. In multi-agent RL it is the main

cause of instability, since when an agents behaviour changes, the policy

of the other agents must be adapted.

25

Chapter 4

Methods

An observation that underpins the new exploration methods proposed in

this thesis is that while, in multi-agent systems, policies should be eventually

decentralised, the exploration can benefit from centralisation. Centralising

and coordinating the exploration, as discussed below, generates a richer

experience replay, with more instances of valuable cooperation.

In this chapter, we propose three distinct methods of exploration. The first,

centralised ε-greedy (Sec.4.1), is a novel variation of the commonly used

exploration technique ε-greedy. Next, we adapt the approximate Bayesian

exploration using dropout from Gal and Ghahramani [17] to work in multi-

agent Actor-Critic settings (Sec. 4.2). Finally, we introduce a novel ex-

ploration method inspired by auto-regressive models that focus on agent

coordination during exploration (Sec. 4.3).

4.1 Centralising Exploration

The centralisation of exploration follows the centralised learning and decen-

tralised execution paradigm, commonly used in multi-agent learning [14,

29, 37]. During centralised learning, often in lab conditions or a simulation,

agents share knowledge or observations which helps stabilise the training of

26

Chapter 4 Methods Filippos Christianos

Figure 4.1: The prisoners dilemma where players 1 and 2 can each
perform the actions (C)ooperate and (D)efect. This is the table of rewards
where players 1 and 2 receive their reward respectively. Illustrated are
the probabilities of a joint action if the greedy action for both agents is

calculated to be defect.

a decentralised policy. Later, this policy is used in decentralised execution,

where this knowledge is no longer public. Despite the prevalence of sharing

observations and other knowledge during training —mostly used for improv-

ing the critics or value function approximators— the use of that knowledge

for efficient exploration has not been studied. We propose centralised explo-

ration, a mechanism that coordinates the exploration while having access to

the observations and rewards of all agents.

To introduce the intuition behind centralised exploration, we study the classic

game theory game Prisoner’s Dilemma. The game consists of two criminals,

the players, apprehended for a heist. However, the prosecutor does not have

sufficient evidence to pursue the full charges. He is offering the opportunity

to the prisoners to betray each other and lessen their punishment. Thus,

each player is presented with two actions: accept the opportunity and defect

or stay silent and cooperate with the other. This leads to three distinct

scenarios: both staying silent (C/C), and be imprisoned for lesser charges;

both betraying each other (D/D) and serving time for the full crime minus

the deal; and finally, one betraying the other, and set free, while the other

serves extended prison time (C/D or D/C). Fig. 4.1 also shows the rewards

for each player.

27

Chapter 4 Methods Filippos Christianos

In prisoners dilemma, while both agents can benefit from cooperating, a

rational agent will always choose to defect. The reason for this is that

defection always leads to higher payoff than cooperation regardless of the

opponent’s choice. Hence, mutual defection is the only Nash Equilibrium in

this game.

An extended version of this game is the Iterated Prisoner’s Dilemma (IPD)

where the game is repeated a known, unknown, or infinite number of times.

In this game, the agents have the opportunity to penalise each other or

learn better strategies. IPD has been widely studied in the game theory

community, and strategies, including Tit-For-Tat [6] have been shown to

work well. Despite this, it is tempting to apply the Bellman Equation

(Eq. 3.3) in the manner of Independent Q-Learning (IQL) to study ε-greedy

exploration in this simple domain.

In this setting, two independent agents following ε-greedy run the risk of

repeatedly punishing each other during exploration and never learning to

cooperate. In fact, higher ε leads to worse chances of converging to the

optimal C/C strategy, as experimentally shown in Sec. 5.1. In addition,

independently exploring leads to many visits to the C/D or D/C actions

which are punishing for one of the agents.

A solution to this conundrum comes naturally in the form of centralised

ε-greedy. Specifically, in this variation, ε is used to define a probability

of all agents exploring instead of each agent having its own, independent

probability. Formally, with probability 1 − ε, all agents will choose their

greedy actions, and else choose uniformly randomly. More details can be

seen in Alg. 4.

An example that demonstrates the effectiveness of centralised ε-greedy

begins in the IPD setting and two independent Q-Learning agents described

above. In this example, both agents start with the Defect action having

a higher value, namely their greedy action. Agents both defecting is the

Nash Equilibrium, which makes it a common scenario early on. Afterwards,

28

Chapter 4 Methods Filippos Christianos

Algorithm 4 Centralized ε-greedy

Input: List of Agents a

1: function SelectActions(a, ε)
2: r ← Uniform(0, 1)
3: actions ← ∅
4: for ai in a do
5: if r > ε then
6: actions.append(ai.greedy)
7: else
8: actions.append(ai.random)

return actions

exploration in an independent ε-greedy manner focuses the exploration

efforts to the C/D and D/C actions and less often on the more rewarding

C/C action. Eq. 4.1 below demonstrates the unwanted asymmetry of the

explored joint actions

P (D,D) =

No Expl.︷ ︸︸ ︷
(1− ε)2 +

1

2

One Expl.︷ ︸︸ ︷
ε(1− ε) +

1

4

Both Expl.︷︸︸︷
ε2

P (C,D) = P (D,C) =
1

2
(
1

2
ε(1− ε) +

2

4
ε2)

P (C,C) =
1

4
ε2

(4.1)

This assymetry is the result of agents not coordinating their exploration.

In order for agents to visit C/C, they both have to explore simultaneously,

which is rare, especially in smaller values of ε. However, with the simple

modification of centralised ε-greedy, the probabilities of each joint action

becomes

P (D,D) =

No Expl.︷ ︸︸ ︷
(1− ε) +

1

4

Expl.︷︸︸︷
ε

P (C,D) = P (D,C) =
1

4
ε

P (C,C) =
1

4
ε

(4.2)

The exploration action, with probability ε, uniformly explores the action

space.

29

Chapter 4 Methods Filippos Christianos

4.2 Approximate Bayesian Actors for

Exploration in MAS

The ε-greedy exploration method has been studied widely in the past [10,

47, 52], and produces satisfactory results despite its simplicity. However, ε-

greedy is built to explore the action space uniformly and with no mechanism

that allows preference to unexplored or promising actions. There exist

alternatives that address these issues, such as UCB, Boltzmann and Thomson

sampling [49]. Thomson sampling (Sec. 3.1.3) has also been applied in deep

settings [17] and consists of randomly sampling from posteriors and then

maximising the expected reward with respect to the sample.

Traditionally, Thomson sampling has been studied and applied to the multi-

armed bandit problem [1, 49], formally an MDP with one state, but can be

trivially extended to multiple states [2, 9, 17]. In Q-learning, an agent must

maintain posteriors over Q-values, and during action selection, it has to

sample a Q-value for each action and select the action that maximises the

sampled values. This method selects actions with high potential and offers

some theoretical guarantees such as self-correcting behaviour and confidence

bounds.

Despite this obvious advantage, Thomson sampling is not often used because

of the computationally hard task of updating posteriors. Deep learning lacks

the framework for Bayesian updates, and Gaussian processes cannot process

the amount of data modern RL tasks need. However, recently Gal and

Ghahramani [17] showed that the use of dropout in a model is equivalent to

Bayesian approximation of the model output, and can be used in conjunction

with Thomson sampling for more efficient exploration.

Currently, state of the art in multi-agent RL revolves around Actor-Critic ar-

chitectures, and adapting them to Thomson sampling is not straightforward.

In this section, we extend the state of the art algorithm MADDPG [29]

discussed in Sec. 3.3 and make use of dropout as proposed by Gal and

30

Chapter 4 Methods Filippos Christianos

Ghahramani [17] for exploration. Our adaptation will be refered to as

MADDPG with Thomson Sampling or MADDPG-TS.

Dropout, during training, randomly disables nodes from the neural network

with a probability p. The forward pass and the backpropagation are per-

formed as if the disabled nodes do not exist. If dropout is disabled, each

layers output is scaled down by multiplying with p. As mentioned before, in

Sec. 2.3, Gal and Ghahramani reinterpret dropout as a Bernoulli distribution

and the output of the network as a Bayesian approximation.

MADDPG uses centralized critics, conditioned on all observations and

actions o1, o2, . . . , on, a1, a2, . . . , an. In addition, n policies µθi (abbreviated

µi) are trained by maximizing the expected return J(θi) = E[Gi]. The

gradients can be calculated using Eq. 3.8.

It is worth noting that by using dropout in the policy networks, as proposed

by Gal and Ghahramani [17], we instead fit a distribution of actions to

µi. While this leads to a non-deterministic policy, we choose to keep the

µ notation since the distribution is internal to the deep network, and can

also be disabled. This distribution represents our model uncertainty of what

actions maximise the value network output.

Despite Gal and Ghahramani [17] using dropout in an implementation of

DQN [31], and fitting distributions in the value network, we will keep point

estimates of the Q-values. The reason behind this decision is that training

the Actor is dependent on Qµi (x, a1, . . . , aN) as seen in Eq. 3.8. However,

if the value network can only sample from a distribution, an approximate

computation of the expectation requires several forward passes.

Fortunately, a distribution over the policies µi is sufficient in the actor-critic

setting since it envelops the uncertainty of the value network. Naturally, by

sampling from µi, we are able to explore efficiently (see Thomson sampling

Sec. 3.1.3), making use of the uncertainty over which action might maximise

the Q-value.

31

Chapter 4 Methods Filippos Christianos

As a final note, it is worth mentioning the non-trivial task of evaluating poli-

cies trained with this method. In a typical ε-greedy policy, when evaluating,

we set ε to zero and essentially use the greedy policy. However, this is not

exactly possible with the method described in this section. There are three

approaches to address this issue, each with its own disadvantages: i. turn

off dropout during evaluation, ii. calculate the mean of multiple samples or,

iii. keep using the exploration enabled network.

The first option would be the first instinct of someone using dropout as a

noise addition, or a regularizer. However, if considered as fitting a distribution

in a sense described by Gal and Ghahramani [17], then turning off dropout

is equivalent to sampling zi,k ones from a Bernoulli [17], which is rather

unlikely. The second option is much more suited, as it follows the reasoning

behind using dropout in the first place: fitting a distribution. Calculating

an empirical mean is easy and efficient, requiring only a batched forward

pass from the network. Nevertheless, we have opted on never disabling

exploration (option iii) and always use Thomson sampling. Empirically,

we observed better results this way since the additional stochasticity helps

agents escape suboptimal states. This is also utilised in the experiments of

well known deep RL algorithms such as the DQN [31].

4.3 Extending to Auto-regressive Joint

Exploration

In an effort to combine the two aforementioned methods, centralised ε-greedy

and MADDPG with Thomson Sampling, we propose a joint exploration

method inspired from auto-regressive models seen in unsupervised learn-

ing [32]. Our algorithm, MADDPG-AR (MADDPG with Auto-Regressive

exploration), trains an additional n− 1 policies conditioned on both the ob-

servation and the actions of other agents. In addition to the MADDPG-TS’s

32

Chapter 4 Methods Filippos Christianos

µθi(oi) policy networks, we learn n− 1 networks

µθci (oi, a1, . . . , ai−1)∀i ∈ {2, . . . , n}

that output the corresponding actions ai. We will refer to them as µci for

brevity.

Those networks will be trained simultaneously, but called in sequence to

generate a joint action a. Specifically, the action a1 of the first agent will

be generated with the policy a1 = µ1(o1), then the action generated will be

used for a2 = µc2(o2, a1) to create the second action. This can be repeated

to generate actions for all agents and the joint action a = {a1, a2, . . . , an}.

The final architecture of MADDPG-AR consists of critic, decentralised policy,

and exploration policy networks. First, n critic networks Qµ
i (o, a1, . . . , an)

(seen in Fig. 4.2) are used to approximate the state-action value for the

i-th agent. These networks are trained similarly to MADDPG using Eq. 3.7,

where µ′ is the target policy networks with delayed parameters.

For the decentralised execution, n policy networks µi(oi) will be trained

(Fig. 4.3) and eventually used in decentralised settings, which only receive

as an input the agents observation. We will be using gradient ascent to

maximise the expectation J(θci) = E[Gi], as also seen in Alg. 5 lines 16–17

and Eq. 3.8.

Finally, the additional n− 1 networks, conditioned on a sequence of actions

(seen in Fig. 4.4 and 4.5) are also trained by maximising again J(θi) = E[Gi]

or:

∇θci
J (µci) = Ex,a∼D

[
∇θci

µci (ai|oi, a1, . . . , ai−1)

∇aiQ
µ
i (x, a1, . . . , an)|ai=µc

i (oi,a1,...,ai−1)

] (4.3)

33

Chapter 4 Methods Filippos Christianos

Figure 4.2: Critic network. n such networks are used, generating the
state-action value for the respective agent. The critic follows the cen-
tralised learning paradigm by being conditioned on observations that

will not be available in decentralised settings.

Figure 4.3: Actor network. n such networks are used, generating the
actions of each agent in a decentralised manner.

Figure 4.4: Coordinated actor network. n− 1 such networks are used
in sequence, generating a joint action used only for exploration during

learning.

seen in lines 18–19, Alg. 5. The conditional network will only be used during

exploration (lines 4–6) with the purpose of generating experience for the

replay buffer D.

Our algorithm is seen in Alg. 5. By replacing the action selection of the

original MADDPG (Alg. 3), lines 3–6 generate a joint action in a coordinated

fashion. Also, in lines 18–19 we train the additional parameters of the

conditional networks.

34

Chapter 4 Methods Filippos Christianos

Figure 4.5: A top down view of MADDPG-AR action generation
with three agents. The first agent only receives its observation, but any

subsequent agents also receive the actions of ‘previous’ agents.

Algorithm 5 Coordinated Exploration (in MADDPG) Algorithm

Initialize replay memory D with capacity N
Initialize policies θ1...n and Q-function parameters φ1...n for n agents
Initialize conditional policies θc2...n
Initialize target network with weights θ̂i = θi and φ̂i = φi for i = 1 . . . n
Initialize 0 < τ < 1 as the target update hyperparameter

1: for timestep t in every episode 1 . . .M do
2: Observe o
3: a ← {}
4: Append a1 = µ(oi; θi)) to a
5: for i in {2 . . . n} do
6: Append ai = µ(oi, a1, . . . , ai−1; θ

c
i) to a . coordinated actions

7: Execute a and observe o′, r of all agents
8: Store (o,a,o′, r) in buffer
9: if t mod Tupdate 6= 0 then

10: Continue
11: for i in {1 . . . n} do
12: Sample mini-batch B: (o,a,o′, r) from D

13: y ←

{
ri, if o′i is terminal

ri + γQ(o′,a; φ̂i), otherwise

14: Qgradients ← ∇φi
1
|B|
∑

B(Q(o,a;φi)− y)2

15: Gradient descend step on Qgradients with respect to φi
16: µgradients ← − 1

|B|
∑

B∇aiQ(oB, aB1 . . . α
B
n ;φi)∇θiµ(oBi ; θi)

17: Gradient descend step on µgradients with respect to θi
18: µcgradients← − 1

|B|
∑

B∇aiQ(oB, aB1 . . . α
B
n ;φi)∇θci

µ(oBi , a1, . . . , ai−1; θ
c
i)

19: Gradient descend step on µcgradients with respect to θci
20: φ̂i ← τ φ̂i + (1− τ)φi . Soft updates simi-
21: θ̂i ← τ θ̂i + (1− τ)θi . lar to MADDPG
22: θ̂ci ← τ θ̂ci + (1− τ)θci . for target stability

35

Chapter 4 Methods Filippos Christianos

It should be noted that MADDPG is not mandatory but just a design

decision. Our algorithm can be adapted to fit other RL algorithms such as

Soft Actor-Critic [22].

4.3.1 Specifying the Order of Action Generation

An immediate question arising from this method is the order in which the

actions are generated. However, we argue that the order is not as important

and can be arbitrarily chosen. For instance, the PixelCNN [32] model from

which this method was inspired, is generating pixels from the upper left to

the lower right corner (a randomly chosen order) using this exact procedure

and produces exceptional results.

This can also be understood better if one considers that this method attempts

to sample from a joint policy P (a|o1, . . . , on) (or abbreviated to P (a)). In

the simplest case of n = 2 and using the chain rule we can write it as

P (a1, a2) = P (a1)P (a2|a1) (4.4)

Given that the policies we are training are approximating those distributions

and we can sample from them µ1(o1) and µ2(o2, a1), sampling from the joint

a ∼ P (a1, a2) (4.5)

is equivalent to sampling from the prior

a1 ∼ P (a1)

and then (due to independency) the conditional

a2 ∼ P (a2|a1)

36

Chapter 4 Methods Filippos Christianos

Of course it is now apparent, that first sampling a2 ∼ P (a2) and then

sampling a conditional a1 ∼ P (a1|a2) is equivalent to Eq. 4.5.

Finally, there is an alternative to picking an arbitrarily chosen order, Gibbs

sampling [18]. Gibbs sampling allows us to approximate sampling from

P (a1, a2) by having access to both P (a1|a2) and P (a2|a1). We have not used

this method in our experiments since the increased computing requirements

do not offer added performance, but it is worth noting that it exists as an

alternative.

37

Chapter 5

Experiments

In this chapter, we present experiments on our methods and show how they

compare to baselines. Centralised ε-greedy is first implemented in tabular

settings, in the toy problem of Iterated Prisoners Dilemma. There, we show

that even simple coordination using centralised ε-greedy exploration indeed

performs better than simple ε-greedy. Then, we experiment in large state-

space problems (level-based foraging), where deep learning is a requirement,

but also noisy and prone to hyperparameter sensitivity. Again, we show that

i. centralised ε-greedy exploration outperforms ε-greedy in some domains,

ii. Thomson Sampling achieves higher returns than previously mentioned

methods in non-cooperative level-based foraging, and iii. Auto-regressive

exploration learns in less training timesteps and achieves higher returns

than all other tested algorithms.

5.1 Centralised ε-greedy in Prisoners

Dilemma

We borrow the IPD problem, described in Sec. 4.1, and use it as a toy

problem due to both its simplicity and difficulty.

38

Chapter 5 Experiments Filippos Christianos

Table 5.1: Parameters used for the IPD experiments and centralised vs.
decentralised ε-greedy

Parameter Value

Episode Length 50

Episode Count 10

Seeds 1000

Learning Rate 0.3

Discount 0.7

Epsilon 0.1, . . . , 0.9

While the Iterated Prisoners Dilemma is represented having a single state1,

we still use Q-learning as a stepping stone to more complex environments.

Independent Q-Learning [48] is the most straightforward algorithm that can

be complemented with both ε-greedy or centralised ε-greedy and tested on

IPD. We train two IQL agents by repeatedly using the update rule (Eq. 3.4)

on a single state.

We allowed each pair to run 10 episodes of 50-step IPD with the parameters

found in Tab. 5.1. Then, we noted if the Q-values converged and the policy

was the optimal C/C joint action. Convergence was established if the

change of Q-values in the last episode was below the threshold of 10−2. This

process was repeated for 1000 seeds to generate a percentage. In Fig. 5.1,

the percentage of convergence to the C/C actions is shown under the two

exploration strategies.

We point out that the x-axis represents different values of ε. This visualisa-

tion shows that improved performance is achieved in all settings and that

centralised ε-greedy is not equivalent to more exploration (larger ε). It can

be observed that in this problem, more exploration penalises agent visits to

C/D and D/C more often and that improvement is achieved instead with

more efficient exploration.

1In reality, due to the multi-agent nature of the problem, a state adhering to the Markov
property would include a history of all interactions. However, due to the exponential
increases of state-space, this is never used in MARL.

39

Chapter 5 Experiments Filippos Christianos

Figure 5.1: Performance of two IQL pairs of agents. The agents in the
blue pair are using centralised ε-greedy while the orange pair are using
simple ε-greedy. The centralised ε-greedy converges more often to the

optimal C/C (y axis) regardless of the value of ε (x axis).

C/C C/D D/C D/D
Joint Actions

0

10

20

30

40

50

Ac
tio

ns
 S

el
ec

te
d

Du
rin

g
Tr

ai
ni

ng
 (%

)

(a) Action selection during learning for
centralised ε-greedy

C/C C/D D/C D/D
Joint Actions

0

10

20

30

40

50

Ac
tio

ns
 S

el
ec

te
d

Du
rin

g
Tr

ai
ni

ng
 (%

)

(b) Action selection during learning for
decentralised ε-greedy

Figure 5.2: This bar chart shows the distribution of joint actions, during
the exploration phase, on the 50 timestep long IPD, with an ε = 0.2. As
shown, the centralised ε-greedy visits the C/D and D/C state less often,

which helps converging to the optimal C/C.

40

Chapter 5 Experiments Filippos Christianos

(a) An episode where the agents need to
cooperate in all instances to collect the

food.

(b) The agents should compete, and try
to maximise their reward to the detriment

of each other.

Figure 5.3: A visualisation of the level based foraging domain. The
numbers indicate the level of the agent or food. Agents must move
adjacent to foods and use the load action, while having a cumulative
level equal or higher than that of the food. Only agents participating in
loading will be rewarded. The levels (a number) are noted next to the

foods or agents.

5.2 A Harder Task: Level Based Foraging

IPD proved to be an interesting toy problem that demonstrated that co-

ordinating the exploration efforts is often rewarding. A more interesting

and harder environment is Level-Based Foraging, which has been studied in

multi-agent systems in the past [3]. This environment is a mixed cooperative-

competitive game, which focuses on the coordination of the agents involved.

Agents navigate a grid world and collect food by cooperating with other

agents if needed.

More specifically, agents are placed in the grid world, and each is assigned

a level. Food is also randomly scattered, each having a level on its own.

Agents can navigate the environment and can attempt to collect food placed

next to them. The collection of food is successful only if the sum of the

levels of the agents involved in loading is equal to or higher than the level

of the food. Finally, agents are awarded points equal to the level of the food

they helped collect, divided by their contribution (their level). Fig. 5.3a and

41

Chapter 5 Experiments Filippos Christianos

5.3b show two states of the game, one that requires cooperation, and one

more competitive.

While it may appear simple, this is a very challenging environment, requiring

the cooperation of multiple agents while being competitive at the same time.

In addition, the discount factor also necessitates speed for the maximisation

of rewards. Each agent is only awarded points if it participates in the

collection of food, and it has to balance between collecting low-levelled food

on its own or cooperating in acquiring higher rewards. In situations with

three or more agents, highly strategic decisions can be required, involving

agents needing to choose with whom to cooperate. Another significant

difficulty for RL algorithms is the sparsity of rewards, which causes slower

learning.

The observation of each agent, is a vector of length 3 ∗MaxFoodCount+

3∗AgentCount where for each food location and agent, the y, x coordinates

and the level is listed. The upper-left corner is (0, 0). If a food has been

collected then −1 is placed instead of each coordinate. An example of an

observation vector, the one of Fig. 5.3a, is printed below: 1, 3, 4,︸ ︷︷ ︸
y,x,level of food 1

4, 5, 4, 5, 1, 2,︸ ︷︷ ︸
y,x,level of agent 1

5, 7, 2

Each agent has access to five actions: {North, South,West, East, Load}.

The first four actions move the agent to that direction, except when another

entity is in that title, or it is the edge of the grid, where no movement

happens. If the loading action is successful, then the food disappears.

The reward of agent i participating in a successful load action of food f , when

the sum of levels of all the starting food is FT and the set of participating

agents is AT :

ri =
level(i) ∗ level(f)

FT ∗
∑

j∈AT
level(j)

42

Chapter 5 Experiments Filippos Christianos

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-8x8-2p-2f-v0
e-greedy
Centralized e-greedy
Gumbel Softmax

(a) Two food locations and two agents in an 8× 8 grid variant of level based foraging
where foods might or might not require cooperation to load.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-8x8-2p-3f-v0
e-greedy
Centralized e-greedy
Gumbel Softmax

(b) Three food locations and two agents in an 8× 8 grid variant of level based foraging
where foods might or might not require cooperation to load.

Figure 5.4: Performance over training time in the level-based foraging
task with two players. Centralised exploration seems to benefit the harder

task of three foods.

During all other transitions, including failed attempts at collecting food, a

reward of zero is given. This reward structure ensures: i. a maximum of one

is awarded across all agents in each episode and ii. decisions on what agents

to cooperate with, are important.

Our simulator, created as part of this thesis, is a Python implementation

for level based foraging2. It is based on OpenAI’s RL framework, with

2https://github.com/semitable/lb-foraging

43

https://github.com/semitable/lb-foraging

Chapter 5 Experiments Filippos Christianos

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-6x6-2p-1f-coop-v0
e-greedy
Centralized e-greedy
Gumbel Softmax

(a) One food location and two agents in an easier 6×6 grid variant of level based foraging
where loading of food always requires cooperation

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-8x8-2p-2f-coop-v0
e-greedy
Centralized e-greedy
Gumbel Softmax

(b) Two food locations and two agents in an 8× 8 grid variant of level based foraging
where loading of food always requires cooperation

Figure 5.5: Performance over training time, in the cooperative variants
of level-based foraging task with two players. Coordinated foraging turns
out to be too hard for sufficient learning to occur. Both variants of

ε-greedy had similar performance.

modifications for the multi-agent domain. The efficient implementation

allows for thousands of simulation steps per second on a single thread,

while the rendering capabilities allows humans to visualise agent actions.

Our implementation can support different grid sizes or agent/food count.

Also, game variants are implemented, such as cooperative mode (agents

always need to cooperate) and shared reward (all agents always get the

same reward), which is useful as a credit assignment problem.

44

Chapter 5 Experiments Filippos Christianos

Table 5.2: The evaluation parameters in all experiments of the level-
based foraging environment (unless stated otherwise) in the figures pre-
sented. During training, 20 evaluation episodes are executed every 5×104

timesteps and the average summed reward recorded. The process is re-
peated with 10 different seeds. Lines in the graph are smoothed with a

moving average window of 10.

Eval. Frequency Episodes Moving Avg Window Seeds

5× 104 timesteps 20 10 10

Given that multi-agent RL has limited availability to highly polished en-

vironments, we hope that our implementation will be useful to other RL

researchers as well.

In this domain, we will use the term performance, rewards or returns in

the context of the sum of the rewards of the agents over an episode. As

performance of an algorithm we will be using the average of this sum over

all our seeds in an evaluation step (average reward in 20 trial episodes × 10

seeds unless stated otherwise: Tab. 5.2).

We conducted extensive hyperparameter search on the parameters found

in Tab. 5.3 and compared centralised ε-greedy on the level based foraging

domain. Fig. 5.4 and 5.5 show the performance of ε-greedy, centralised

ε-greedy, and Gumbel Softmax sampling which is the original MADDPG

exploration method. Centralised ε-greedy has a slight advantage over non-

centralised in both Fig. 5.4a (only in the first 6× 106 timesteps) and 5.4b.

However, in the harder cooperative foraging domain (Fig. 5.5), the results

appear too noisy, and no apparent improvement is seen. We argue that this

is due to the sparse rewards and the necessity of stumbling to a rewarding

transition. The figures in this chapter, include in the form of a shaded area

the standard error.

45

Chapter 5 Experiments Filippos Christianos

Table 5.3: Hyperparameter combinations tested for the two ε-greedy
algorithms: simple and centralised. In brackets the hyperparameters
tested and in bold is the best performing combination of centralised

ε-greedy (used in the figures below.)

Hyperparameter Value

Linear Epsilon Anneal (timesteps) {5e6, 1e7, 2e7}
Epsilon Target {0.01, 0.1}
Hidden Layers {[64,64], [128,128]}
Actor Learning Rate {0.001, 0.0001}
Critic Learning Rate {0.01, 0.001}
Batch Size 1024

5.3 Improving Performance with Thomson

Sampling

We have implemented Thomson sampling exploration as described in Sec. 4.2

by using dropout coupled with MADDPG. As described previously, MAD-

DPG has an Actor-Critic architecture with multiple networks, and which

ones should model uncertainty becomes an important decision.

First, the target networks for both the policies and values are supposed to

be offering stability during training [29, 31]. We have opted out of using

dropout on them, since it inherently creates noisy targets. The next decision

is modelling uncertainty on the value networks or the actor networks. While

the most natural option would be to be uncertain about the values of the

states (the value network), the Actor network is the driving force behind

the exploration. We also need to take into account the backpropagation

step, where the Actor is trying to maximise the Q-values and is reliant on

the critic: a noisy critic would lead to instability in training of the Actor

(Eq. 3.8). Finally, since the Actor network is trying to maximise the Q-values,

it should have a notion of those values in the hidden layers. Thus, it is

reasonable to only enable dropout in the Actor network, and sample from

its distribution in order to use Thomson Sampling.

46

Chapter 5 Experiments Filippos Christianos

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-8x8-2p-2f-v0

MADDPG with
Centralized e-greedy
Thomson Sampling
Gumbel-Softmax

(a) Two food locations and two agents in an 8× 8 grid variant of level based foraging
where foods might or might not require cooperation to load.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-8x8-2p-3f-v0
MADDPG with

Centralized e-greedy
Thomson Sampling
Gumbel-Softmax

(b) Three food locations and two agents in an 8× 8 variant of level based foraging where
foods might or might not require cooperation to load.

Figure 5.6: Performance of Thomson Sampling over training time,
in the level-based foraging task with two players. Thomson Sampling
exploration greatly outperforms both ε-greedy and the original Gumbel

Softmax sampling.

Fig. 5.6 show the performance of Thomson sampling with the use of dropout

in the level-based foraging domain. Thomson sampling as described in

Sec. 4.2 clearly outperforms all other exploration methods and almost

reaches an excellent mean reward close to 0.9, which means that 90% of

the time all foods are collected. Notably, Thomson sampling only requires

3× 106 timesteps, a visible improvement over the alternatives.

However, in the harder task of cooperative foraging, where cooperation

47

Chapter 5 Experiments Filippos Christianos

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-6x6-2p-1f-coop-v0
MADDPG with

Centralized e-greedy
Thomson Sampling
Gumbel-Softmax

(a) One food location and two agents in an easier 6×6 grid variant of level based foraging
where loading of food always requires cooperation

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-8x8-2p-2f-coop-v0
MADDPG with

Centralized e-greedy
Thomson Sampling
Gumbel-Softmax

(b) Two food locations and two agents in an 8× 8 grid variant of level based foraging
where loading of food always requires cooperation

Figure 5.7: Performance of Thomson Sampling over training time, in
the cooperative variants of level-based foraging task with two players.
Thomson Sampling exploration fails to perform as well as centralised

ε-greedy, which also performs poorly.

is always required to load food, this method fails to perform as well as

centralised ε-greedy (seen in Fig. 5.7). This can be explained if one considers

the extreme sparsity of the rewards from the environment. In an 8x8 grid, the

probability of randomly loading a food through cooperation is extremely low.

As such, most of the transitions gathered have a reward of zero. Thomson

sampling relies on uncertainty, but a plethora of transitions with zero

reward lead the networks to have high confidence that all the rewards are

48

Chapter 5 Experiments Filippos Christianos

indeed none. Because of the narrow distributions, Thomson sampling stops

exploring much in contrast to ε-greedy where exploration is forced through

an ε hyperparameter. Thomson sampling could possibly be improved, in

these settings, with the use of Prioritised Experience Replay [40].

5.4 Evaluating Auto-regressive Joint

Exploration

Finally, we will be completing the experiments with an evaluation of the

method proposed in Sec. 4.3. The use of a joint policy dedicated to ex-

ploration is novel, and as seen in our results below, outperforms the non-

coordinated MADDPG-TS method.

First, we attempt to validate our intuition: that the coordinated network can

reliably acquire better rewards. Fig. 5.8, illustrates the rewards of actions,

during training, generated through the decentralised policies µ(a1), µ(a2) and

the coordinated µ(a1), µ(a2|a1), while the networks are trained through our

MADDPG-AR method. We discern that generating actions in a coordinated

manner consistently achieves better rewards. Also, the decentralised policies

quickly follow and learn from the experience generated.

To compare this method with others, we performed again a grid search

of hyperparameters, seen in Tab. 5.4. We used a wider network (that is

known to benefit larger dropout values), and a more targeted search for good

hyperparameters, which explains the increased performance to Sec. 5.3.

In addition, since this exploration method solves the less demanding variants

of level-based foraging quickly, we have replaced the one food variation with

four foods on a 10×10 board. For this part of the experiments, we ran a grid

search on the hyperparameters of Tab. 5.4 and used the best combination

for each of the two algorithms.

49

Chapter 5 Experiments Filippos Christianos

0 250000 500000 750000 1000000 1250000 1500000 1750000
Training Timesteps

0.3

0.4

0.5

0.6
Av

er
ag

e
Re

wa
rd

Evaluating coordinated and decentralised policies

MADDPG-AR
Coordinated Policies
Decentralised Policies

Figure 5.8: Evaluation of the decentralised policies: µ(a1), µ(a2) vs.
the coordinated: µ(a1), µ(a2|a1). Exploration was performed with coordi-
nated policies (MADDPG-AR). Two player, 8× 8 level-based foraging

with four food locations.

Table 5.4: Hyperparameters searched for the Auto-regressive exploration
algorithm and MADDPG-TS. In brackets are the tested hyperparameters
and bold highlight shows those that were found to perform the best, and

are used in the graphs below.

Hyperparameter Value

Dropout {0.1, 0.2, 0.5}
Hidden Layers [100, 100]

Actor Learning Rate 0.001

Critic Learning Rate {0.01,0.001}
Batch Size 1024

We should note that to generate Fig. 5.9b, we instead used 20 seeds but

discarded those that failed to learn anything useful. To ensure fairness, we

removed failed seeds from both MADDPG-TS and MADDPG-AR attempts.

This was done because this environment needs several random moves to

be executed before the agent starts learning and generating meaningful

experience, and unfortunately, that was not always the case. The problem is

exacerbated because the Actor networks become gradually more confident

that all moves lead to zero rewards, thus exploring progressively less.

In Fig. 5.9 we can observe the learning performance using the two distinct

50

Chapter 5 Experiments Filippos Christianos

0.0 0.2 0.4 0.6 0.8
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-10x10-2p-4f-v0
MADDPG with
Auto-Regressive
Thomson Sampling

(a) Four food locations and two agents in a larger 10× 10 grid

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
wa

rd

Foraging-6x6-2p-1f-coop-v0
MADDPG with
Auto-Regressive
Thomson Sampling

(b) One food location and two agents in an easier 6 × 6 grid variant of level
based foraging where loading of food always requires cooperation

Figure 5.9: Performance over training time, of MADDPG-TS and
MADDPG-AR exploration. The improvement in the two harder tasks is

apparent when using coordinated exploration.

exploration methods. We use the exploration proposed previously, MADDPG

with Thomson Sampling in Sec. 4.2, which is the adaptation of Gal and

Ghahramani [17] in multi-agent systems. MADDPG-AR is our coordinated

exploration method proposed in Sec. 4.3. In Fig. 5.9a and 5.9b we can

discern that the coordinated exploration method achieves peak performance

in significantly less training steps. For clarity, we state again that these

are evaluations of the non-coordinated policies trained with a coordinated

exploration method.

Specifically, in the four food locations environment (Fig. 5.9a) the coordi-

nated method needs less than 7× 106 timesteps to reach peak performance,

51

Chapter 5 Experiments Filippos Christianos

Table 5.5: A summary of the maximum performance of all algorithms
and environments tested. This is the maximum reward after averaging
the seeds and limited to the timesteps shown in the respective graphs.
Left column is the environment parameters: grid-size, number of foods
and if cooperative. Maximum achievable reward is 1. The standard error

can be found in the respective figures in Chapter 5.

MADDPG ε-greedy Centr. ε-greedy MADDPG-TS MADDPG-AR

8x8 2f 0.334 0.480 0.505 0.848 -

8x8 3f 0.256 0.434 0.483 0.861 -

10x10 4f - - - 0.687 0.729

6x6 1f coop 0.071 0.365 0.373 0.354 0.452

8x8 2f coop 0.008 0.081 0.086 0.003 0.004

Table 5.6: Iterations per second for each of our tested algorithms. A
network with 64× 64 hidden size was used and the level-based foraging
domain on a 8 × 8 grid and two players. Timings were recorded on a

current-gen laptop CPU.

MADDPG ε-greedy Centr. ε-greedy MADDPG-TS MADDPG-AR

Speed it
s 702.09 1295.77 1289.01 796.11 729.87

while the non-coordinated version needs more than 107. That is also similar

to the cooperative environment (Fig. 5.9b).

The results are consistent with our expectations. The improved exploration

method identifies faster correct joint actions, which yield rewards, and

performs them, filling the experience replay with meaningful transitions.

Eventually, the non-coordinated exploration method also generates sufficient

experience and slowly matches the performance.

In Tab. 5.5 we summarise the best performance, after averaging the seeds,

of all tested algorithm and environment combinations.

52

Chapter 5 Experiments Filippos Christianos

5.5 Computational Requirements

We also measure the training speed of all the algorithms that have been

used in this work. Tab. 5.6 presents the recorded training speed. These

numbers have been generated on a current-generation laptop CPU, and

PyTorch implementation running on a single-core.

MADDPG, with the original Gumbel-Softmax exploration method runs the

slowest3. On the other hand, the ε-greedy methods are the fastest since the

exploration cost is limited to generating one random number.

The addition of an extra network when transitioning from MADDPG-TS to

MADDPG-AR appears to have minimal effect. Specifically, the MADDPG-

TS runs at about 796 iterations per second, while the coordinated method 729:

a decrease in speed of 8.42%. However, the need of significantly less timesteps

to reach peak performance leads to the non-coordinated exploration requiring

(as an example, in the cooperative environment Fig. 5.9b) 1
796
∗ 107 ≈

3.5hours of training time, while coordinated exploration 1
729
∗ 7 ∗ 106 ≈

2.6hours: a decrease of 25.71% in wallclock time with our method on the

harder environments.

3Each sample from Gumbel-Softmax requires two calculations of the log function
which is computationally expensive

53

Chapter 6

Conclusion

This thesis introduces, motivates, and experiments on three novel methods

of exploration. First, centralised ε-greedy, which is a simple, yet impactful

alteration to the simple ε-greedy. Second, we adapt Thomson sampling

with the use of dropout to multi-agent Actor-Critic settings and introduce

MADDPG Thomson Sampling. Finally, we combine the previous two ideas

and create MADDPG Auto-regressive Exploration, a method that coordinates

exploration while still learning individual policies.

We also implement and formalise level-based foraging, a multi-agent envi-

ronment, using modern RL frameworks. Changes to the reward function

promote sophisticated strategies, while the efficient implementation facil-

itates the fast generation of trajectories needed for deep RL. We include

several ways to tune the difficulty such as changing the number of food, grid

size, or a cooperative mode where agents must always cooperate.

We present experiments on all three proposed methods, starting from the

toy problem of IPD. Then, we run our methods in several variations of

level-based foraging, with various difficulty levels.

The experiments first show that centralised ε-greedy has an advantage over

simple ε-greedy in several cases, such as in the IPD or when having many

food locations in level-based foraging. Given the popularity of ε-greedy, and

54

Chapter 6 Conclusion Filippos Christianos

the simplicity of our centralised variant, improvement of performance with

such a minor modification is noteworthy.

MADDPG with Thomson Sampling clearly outperforms previous exploration

methods in non-cooperative level-based foraging environments. In some

cases, MADDPG-TS even learns to solve environments that the ε-greedy or

Gumbel-Softmax exploration algorithms could not learn.

Our Auto-regressive Joint Exploration algorithm improves MADDPG-TS

even further and reduces the training steps required to reach peak perfor-

mance. This reduction leads to less computing time requirements (up to a

decrease of 25% in training time) over the second-best exploration algorithm,

MADDPG-TS.

All these exploration methods were paired with MADDPG, a state of the

art multi-agent deep RL algorithm. However, we show that by changing

the original exploration method, Gumbel-Softmax sampling, we regularly

outperform it significantly in the tested environments.

In the future, we plan on testing MADDPG-AR on more complicated

domains such as a robotic warehouse simulator. A large number of agents

should benefit even more from a coordinated approach to exploration. Also,

we would like to experiment on a coordinated exploration method along

with the Soft Actor-Critic (instead of MADDPG), an algorithm that focuses

explicitly on exploration.

55

Bibliography

[1] Shipra Agrawal and Navin Goyal. “Analysis of Thompson Sampling for

the Multi-armed Bandit Problem”. In: COLT 2012 - The 25th Annual

Conference on Learning Theory. Ed. by Shie Mannor, Nathan Srebro,

and Robert C. Williamson. Vol. 23. JMLR Proceedings. JMLR.org,

2012, pp. 391–3926.

[2] Shipra Agrawal and Navin Goyal. “Thompson Sampling for Contextual

Bandits with Linear Payoffs”. In: Proceedings of the 30th International

Conference on Machine Learning (ICML). Vol. 28. JMLR Workshop

and Conference Proceedings. JMLR.org, 2013, pp. 127–135.

[3] Stefano V. Albrecht and Subramanian Ramamoorthy. “A Game-

Theoretic Model and Best-Response Learning Method for Ad Hoc

Coordination in Multiagent Systems”. In: Proceedings of the 12th

International Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS). 2013, pp. 1155–1156.

[4] Stefano V. Albrecht and Peter Stone. “Autonomous Agents Modelling

Other Agents: A Comprehensive Survey and Open Problems”. In:

Artificial Intelligence 258 (2018), pp. 66–95. doi: 10.1016/j.artint.

2018.01.002.

[5] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: Ad-

vances in Neural Information Processing Systems 30: Annual Con-

ference on Neural Information Processing Systems 2017 (NeurIPS).

Ed. by Isabelle Guyon et al. 2017, pp. 5048–5058.

56

https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1016/j.artint.2018.01.002

BIBLIOGRAPHY Filippos Christianos

[6] Robert Axelrod. “The Evolution of Strategies in the Iterated Prisoner’s

Dilemma”. In: The Dynamics of Norms (1987), pp. 1–16.

[7] George W. Brown. “Iterative Solution of Games by Fictitious Play”.

In: Activity Analysis of Production and Allocation 13.1 (1951), pp. 374–

376.

[8] Georgios Chalkiadakis and Craig Boutilier. “Coordination in Mul-

tiagent Reinforcement Learning: A Bayesian Approach”. In: Pro-

ceedings of the 2nd International Joint Conference on Autonomous

Agents & Multiagent Systems (AAMAS). ACM, 2003, pp. 709–716.

doi: 10.1145/860575.860689.

[9] Olivier Chapelle and Lihong Li. “An Empirical Evaluation of Thomp-

son Sampling”. In: Advances in Neural Information Processing Systems

24: Annual Conference on Neural Information Processing Systems

2011 (NeurIPS). Ed. by John Shawe-Taylor et al. 2011, pp. 2249–2257.

[10] Richard Dearden, Nir Friedman, and Stuart J. Russell. “Bayesian

Q-Learning”. In: Proceedings of the 15th National Conference on

Artificial Intelligence and 10th Innovative Applications of Artificial

Intelligence Conference (AAAI/IAAI). Ed. by Jack Mostow and Chuck

Rich. AAAI Press / The MIT Press, 1998, pp. 761–768.

[11] Michael O’Gordon Duff and Andrew Barto. “Optimal Learning: Com-

putational procedures for Bayes-adaptive Markov decision processes”.

PhD thesis. University of Massachusetts at Amherst, 2002.

[12] Yaakov Engel, Shie Mannor, and Ron Meir. “Bayes Meets Bellman:

The Gaussian Process Approach to Temporal Difference Learning”. In:

Proceedings of the 20th International Conference on Machine Learning

(ICML). Ed. by Tom Fawcett and Nina Mishra. AAAI Press, 2003,

pp. 154–161.

[13] Yaakov Engel, Shie Mannor, and Ron Meir. “Reinforcement Learning

with Gaussian Processes”. In: Proceedings of the 22nd International

Conference on Machine Learning (ICML). Ed. by Luc De Raedt and

57

https://doi.org/10.1145/860575.860689

BIBLIOGRAPHY Filippos Christianos

Stefan Wrobel. Vol. 119. ACM International Conference Proceeding

Series. ACM, 2005, pp. 201–208. doi: 10.1145/1102351.1102377.

[14] Jakob N. Foerster et al. “Counterfactual Multi-Agent Policy Gradi-

ents”. In: Proceedings of the 32nd AAAI Conference on Artificial

Intelligence, the 30th innovative Applications of Artificial Intelligence,

and the 8th AAAI Symposium on Educational Advances in Artifi-

cial Intelligence (AAAI). Ed. by Sheila A. McIlraith and Kilian Q.

Weinberger. AAAI Press, 2018, pp. 2974–2982.

[15] Jakob N. Foerster et al. “Stabilising Experience Replay for Deep

Multi-Agent Reinforcement Learning”. In: Proceedings of the 34th

International Conference on Machine Learning (ICML). Ed. by Doina

Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning

Research. PMLR, 2017, pp. 1146–1155.

[16] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Func-

tion Approximation Error in Actor-Critic Methods”. In: Proceedings

of the 35th International Conference on Machine Learning (ICML).

Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of

Machine Learning Research. PMLR, 2018, pp. 1582–1591.

[17] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Ap-

proximation: Representing Model Uncertainty in Deep Learning”. In:

Proceedings of the 33rd International Conference on Machine Learn-

ing (ICML). Ed. by Maria-Florina Balcan and Kilian Q. Weinberger.

Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org,

2016, pp. 1050–1059.

[18] Stuart Geman and Donald Geman. “Stochastic Relaxation, Gibbs

Distributions, and the Bayesian Restoration of Images”. In: IEEE

Trans. Pattern Anal. Mach. Intell. 6.6 (1984), pp. 721–741. doi:

10.1109/TPAMI.1984.4767596.

58

https://doi.org/10.1145/1102351.1102377
https://doi.org/10.1109/TPAMI.1984.4767596

BIBLIOGRAPHY Filippos Christianos

[19] Mohammad Ghavamzadeh and Yaakov Engel. “Bayesian Actor-Critic

Algorithms”. In: Proceedings of the 24th International Conference

on Machine Learning (ICML). Ed. by Zoubin Ghahramani. Vol. 227.

ACM International Conference Proceeding Series. ACM, 2007, pp. 297–

304. doi: 10.1145/1273496.1273534.

[20] Mohammad Ghavamzadeh and Yaakov Engel. “Bayesian Policy Gra-

dient Algorithms”. In: Advances in Neural Information Processing

Systems 19 (NIPS). Ed. by Bernhard Schölkopf, John C. Platt, and

Thomas Hofmann. MIT Press, 2006, pp. 457–464.

[21] Mohammad Ghavamzadeh et al. “Bayesian Reinforcement Learning:

A Survey”. In: Foundations and Trends in Machine Learning 8.5-6

(2015), pp. 359–483. doi: 10.1561/2200000049. arXiv: 1609.04436

[cs.AI].

[22] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum En-

tropy Deep Reinforcement Learning with a Stochastic Actor”. In:

Proceedings of the 35th International Conference on Machine Learn-

ing (ICML). Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80.

Proceedings of Machine Learning Research. PMLR, 2018, pp. 1856–

1865.

[23] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforce-

ment Learning with Double Q-Learning”. In: Proceedings of the 30th

AAAI Conference on Artificial Intelligence (AAAI). Ed. by Dale Schu-

urmans and Michael P. Wellman. AAAI Press, 2016, pp. 2094–2100.

[24] Hado van Hasselt et al. “Deep Reinforcement Learning and the Deadly

Triad”. In: CoRR abs/1812.02648 (2018). arXiv: 1812.02648.

[25] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.

“Planning and Acting in Partially Observable Stochastic Domains”. In:

Artificial Intelligence 101.1-2 (1998), pp. 99–134. doi: 10.1016/S0004-

3702(98)00023-X.

59

https://doi.org/10.1145/1273496.1273534
https://doi.org/10.1561/2200000049
https://arxiv.org/abs/1609.04436
https://arxiv.org/abs/1609.04436
https://arxiv.org/abs/1812.02648
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X

BIBLIOGRAPHY Filippos Christianos

[26] Sammie Katt, Frans A. Oliehoek, and Christopher Amato. “Bayesian

Reinforcement Learning in Factored POMDPs”. In: CoRR abs/1811.05612

(2018). arXiv: 1811.05612.

[27] Jesse Levinson et al. “Towards Fully Autonomous Driving: Systems

and Algorithms”. In: IEEE Intelligent Vehicles Symposium (IV), 2011,

Baden-Baden, Germany, June 5-9, 2011. IEEE, 2011, pp. 163–168.

doi: 10.1109/IVS.2011.5940562.

[28] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement

learning”. In: Proceedings of the 4th International Conference on

Learning Representations (ICLR). Ed. by Yoshua Bengio and Yann

LeCun. 2016.

[29] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-

Competitive Environments”. In: Advances in Neural Information

Processing Systems 30 (NIPS). Ed. by Isabelle Guyon et al. 2017,

pp. 6382–6393.

[30] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforce-

ment Learning”. In: Proceedings of the 33rd International Conference

on Machine Learning (ICML). 2016, pp. 1928–1937.

[31] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement

Learning”. In: CoRR abs/1312.5602 (2013). arXiv: 1312.5602.

[32] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu.

“Pixel Recurrent Neural Networks”. In: Proceedings of the 33rd In-

ternational Conference on Machine Learning (ICML). Ed. by Maria-

Florina Balcan and Kilian Q. Weinberger. Vol. 48. JMLR Workshop

and Conference Proceedings. JMLR.org, 2016, pp. 1747–1756.

[33] Georgios Papoudakis et al. “Dealing with Non-Stationarity in Multi-

Agent Deep Reinforcement Learning”. In: CoRR abs/1906.04737

(2019). arXiv: 1906.04737.

60

https://arxiv.org/abs/1811.05612
https://doi.org/10.1109/IVS.2011.5940562
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1906.04737

BIBLIOGRAPHY Filippos Christianos

[34] Sébastien Paquet, Ludovic Tobin, and Brahim Chaib-draa. “An On-

line POMDP Algorithm for Complex Multiagent Environments”. In:

Proceedings of the 4th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS). Ed. by Frank Dignum et al.

ACM, 2005, pp. 970–977. doi: 10.1145/1082473.1082620.

[35] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. “Point-based

Value Iteration: An Anytime Algorithm for POMDPs”. In: Proceedings

of the 18th International Joint Conference on Artificial Intelligence

(IJCAI). Ed. by Georg Gottlob and Toby Walsh. Morgan Kaufmann,

2003, pp. 1025–1032.

[36] Pascal Poupart et al. “An Analytic Solution to Discrete Bayesian

Reinforcement Learning”. In: Proceedings of the 23rd International

Conference on Machine Learning (ICML). Ed. by William W. Cohen

and Andrew Moore. Vol. 148. ACM International Conference Proceed-

ing Series. ACM, 2006, pp. 697–704. doi: 10.1145/1143844.1143932.

[37] Tabish Rashid et al. “QMIX: Monotonic Value Function Factorisation

for Deep Multi-Agent Reinforcement Learning”. In: Proceedings of the

35th International Conference on Machine Learning (ICML). Ed. by

Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of Machine

Learning Research. PMLR, 2018, pp. 4292–4301.

[38] Stéphane Ross, Brahim Chaib-draa, and Joelle Pineau. “Bayes-Adaptive

POMDPs”. In: Advances in Neural Information Processing Systems

20 (NIPS). Ed. by John C. Platt et al. Curran Associates, Inc., 2007,

pp. 1225–1232.

[39] Stéphane Ross and Joelle Pineau. “Model-Based Bayesian Reinforce-

ment Learning in Large Structured Domains”. In: Proceedings of

the 24th Conference in Uncertainty in Artificial Intelligence (UAI).

Ed. by David A. McAllester and Petri Myllymäki. AUAI Press, 2008,

pp. 476–483. arXiv: 1206.3281 [cs.AI].

61

https://doi.org/10.1145/1082473.1082620
https://doi.org/10.1145/1143844.1143932
https://arxiv.org/abs/1206.3281

BIBLIOGRAPHY Filippos Christianos

[40] Tom Schaul et al. “Prioritized Experience Replay”. In: 4th Interna-

tional Conference on Learning Representations, ICLR 2016, San Juan,

Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by

Yoshua Bengio and Yann LeCun. 2016.

[41] Sandip Sen, Mahendra Sekaran, and John Hale. “Learning to Co-

ordinate without Sharing Information”. In: Proceedings of the 12th

National Conference on Artificial Intelligence (AAAI). Ed. by Barbara

Hayes-Roth and Richard E. Korf. AAAI Press / The MIT Press, 1994,

pp. 426–431.

[42] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “Safe,

Multi-Agent, Reinforcement Learning for Autonomous Driving”. In:

CoRR abs/1610.03295 (2016). arXiv: 1610.03295.

[43] Yoav Shoham, Rob Powers, and Trond Grenager. “If Multi-Agent

Learning Is the Answer, What Is the Question?” In: Artificial Intelli-

gence 171.7 (2007), pp. 365–377. doi: 10.1016/j.artint.2006.02.

006.

[44] David Silver et al. “Mastering Chess and Shogi by Self-Play with a Gen-

eral Reinforcement Learning Algorithm”. In: CoRR abs/1712.01815

(2017). arXiv: 1712.01815.

[45] David Silver et al. “Mastering the Game of Go with Deep Neural

Networks and Tree Search”. In: Nature 529 (2016), pp. 484–503.

[46] Trey Smith and Reid G. Simmons. “Heuristic Search Value Iteration

for POMDPs”. In: Proceedings of the 20th Conference in Uncertainty

in Artificial Intelligence (UAI). Ed. by David Maxwell Chickering and

Joseph Y. Halpern. AUAI Press, 2004, pp. 520–527.

[47] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning -

An Introduction. Adaptive computation and machine learning. MIT

Press, 1998. isbn: 0262193981. doi: 10.1109/tnn.1998.712192.

62

https://arxiv.org/abs/1610.03295
https://doi.org/10.1016/j.artint.2006.02.006
https://doi.org/10.1016/j.artint.2006.02.006
https://arxiv.org/abs/1712.01815
https://doi.org/10.1109/tnn.1998.712192

BIBLIOGRAPHY Filippos Christianos

[48] Ming Tan. “Multi-Agent Reinforcement Learning: Independent vs.

Cooperative Agents”. In: Proceedings of the 10th International Con-

ference on Machine Learning (ICML). 1993, pp. 330–337.

[49] William R Thompson. “On the Likelihood That One Unknown Prob-

ability Exceeds Another in View of the Evidence of Two Samples”.

In: Biometrika 25.3/4 (1933), pp. 285–294.

[50] Oriol Vinyals et al. “StarCraft II: A New Challenge for Reinforcement

Learning”. In: CoRR abs/1708.04782 (2017). arXiv: 1708.04782.

[51] Christopher John Cornish Hellaby Watkins. “Learning from Delayed

Rewards”. PhD thesis. King’s College, Cambridge, 1989.

[52] Michael Wunder, Michael L. Littman, and Monica Babes. “Classes of

Multiagent Q-learning Dynamics with epsilon-greedy Exploration”.

In: Proceedings of the 27th International Conference on Machine

Learning (ICML). Ed. by Johannes Fürnkranz and Thorsten Joachims.

Omnipress, 2010, pp. 1167–1174.

[53] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. “Coordinat-

ing Hundreds of Cooperative, Autonomous Vehicles in Warehouses”.

In: AI Magazine 29.1 (2008), pp. 9–20.

63

https://arxiv.org/abs/1708.04782

	Declaration of Authorship
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Thesis Outline

	2 Review of the Literature
	2.1 Single Agent Deep Reinforcement Learning
	2.2 Multi-agent Deep Reinforcement Learning
	2.3 Exploration through Bayesian Reinforcement Learning
	2.3.1 Model-Based BRL: Using Bayes-Adaptive MDPs
	2.3.2 Model-Free BRL

	3 Technical Background
	3.1 Tabular Approaches to Reinforcement Learning
	3.1.1 Markov Decision Processes
	3.1.1.1 Partially Observable MDPs

	3.1.2 Temporal Difference
	3.1.3 Exploration

	3.2 Deep Reinforcement Learning
	3.3 Multi-agent Reinforcement Learning
	3.4 A Short Summary of the Terminology

	4 Methods
	4.1 Centralising Exploration
	4.2 Approximate Bayesian Actors for Exploration in MAS
	4.3 Extending to Auto-regressive Joint Exploration
	4.3.1 Specifying the Order of Action Generation

	5 Experiments
	5.1 Centralised e-greedy in Prisoners Dilemma
	5.2 A Harder Task: Level Based Foraging
	5.3 Improving Performance with Thomson Sampling
	5.4 Evaluating Auto-regressive Joint Exploration
	5.5 Computational Requirements

	6 Conclusion
	Bibliography

