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Abstract

Detecting Out-of-Distribution Dynamics (OODD) in Deep Reinforcement Learning

(DRL) is a problem with significant importance for real-world applications employing

DRL agents. Failure to detect OODD could lead to serious problems or even result

in life-threatening scenarios. For example, an autonomous vehicle could crash due

to its inability to drive in an environment with OODD. So far, research in the area

has focused on noise-free environments with deterministic transitions. The purpose

of this project is to develop a framework that can operate in non-deterministic and

noisy environments. Our results demonstrate that the developed framework is capable

of detecting OODD in both noisy and non-deterministic environments. This makes

our framework a step towards developing OODD detection methods for noisy, non-

deterministic environments.
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Chapter 1

Introduction

Modern Reinforcement Learning (RL) could be traced back to the late 1980s when

three different areas of research came together: optimal control theory, learning by trial

and error, and temporal-difference methods [60]. RL became a paradigm for solving

various challenging problems at the time, such as, playing games [5, 61], autonomous

vehicle control [1, 44] and robotics [42, 59]. However, RL had limited scalability and it

was not well suited for problems with high-dimensional state space due to the memory

complexity, computational complexity and sample complexity of the algorithms at the

time [4]. Deep Reinforcement Learning (DRL) overcomes these limitation by combin-

ing RL with Deep Learning techniques which can represent high-dimensional spaces

in a compact manner. The power of DRL was first demonstrated by DeepMind when

they developed the Deep Q-Networks (DQN) algorithm which showed a remarkable

performance on several Atari games [45]. Since, DRL has become a popular area of

research within Artificial Intelligence and a powerful instrument for problem-solving.

Programs like AlphaGo [58] and OpenAI’s Five [9], both powered by DRL, have made

headlines in the news as being capable of defeating the best human players in the world

in their respective games. Autonomous driving algorithms use DRL extensively to learn

how to drive safely [34]. A new matrix multiplication algorithm was discovered by

AlphaTensor [22] which is powered by DRL. Recently, DRL has also been used to tune

large language models [10].

In the context of Deep Learning, we often assume that the training data is representative

of the data at inference time and as such, the training data is sufficient for the model

to learn the necessary patterns. For example, in a number plate recognition system

meant for recognising number plates containing only digits, we might chose to deploy

1



Chapter 1. Introduction 2

a digit recognition model. In this case, the model would be trained only with data

containing digits and we would expect all the input images to be of digits. However, a

problem arises when a number plate containing a letter is to be recognized. In this case,

the model would classify incorrectly the letter as a digit which might be undesirable.

A better system would be one that can detect that the input is not a digit and send

the number plate to be inspected by a human. In this example, we can say that the

letter at inference time does not come from the underlying distribution of the training

data which consist of digits only. In general, data that does not conform to a specific

distribution is referred to as out-of-distribution (OOD) with respect to the training data

distribution. The task of detecting OOD data is known as OOD detection which is a

thoroughly researched problem in many domains such as time series forecasting and

image classification [3, 6, 15, 28, 38].

In RL, data comes in the form of observations from the environment. In theory, be-

cause these observations are produced by the same environment dynamics both during

training and inference, the distributions over states induced by a given policy are the

same. Factors like noise can cause observations to appear extreme or unlikely to have

been generated by the underlying distribution of the training data in which case these

observations would be considered OOD. An interesting scenario is the case where a

change occurs in the environment dynamics.

As the underlying distribution of the data is dictated, in part, by the environment dy-

namics, changes in the dynamics will lead to changes in this distribution. Therefore,

the problem of detecting changes in the environment dynamics is an OOD detection

problem referred to as OOD dynamics (OODD) detection. Failing to detect OODD

could result in bad consequences. Consider an example of an autonomous driving

system that was trained on good road conditions: clean dry roads on a sunny day. In

that case, it may not be safe to assume that the system can drive autonomously if the

conditions change - e.g. the road is covered with ice and snow. In such a scenario the

autonomous vehicle should be more cautious and drive slowly, especially when taking

turns. If it takes a turn with the same speed as if the conditions were good, that could

lead to the car sliding off the road and hitting a tree. In this case, using this system

when the dynamics of the environment changes is a health hazard.

Another example is a trading bot that is trained to trade stocks. If the dynamics of
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the markets changes significantly as a result of certain local or global events, or the

introduction of new bots with different trading strategies, then the trading bot might

start making trades that result in a financial loss which would be undesirable. In both

of the examples above we would have preferred to detect when the dynamics of the

environment changed and handle these cases separately, for example, yield the control

of the vehicle to a human and stop trading.

So far, there has been limited work in the area of OODD detection and previous work

has focused on detecting OODD through the states or state-action prediction error in

noise-free environments [17, 26]. Instead, the focus of this research was to build a

framework for OODD detection capable of operating in noisy environments. Further-

more, [17,26] had only focused on deterministic environments. Hence, another objective

of the research was to develop a framework capable of operating in non-deterministic

environments. In the end, the results of the experiments demonstrate that the developed

framework is capable of OODD detection in noisy and non-deterministic environments,

making this research a step towards developing methods for OODD detection in noisy

and non-deterministic environments.

This document is structured as follows. In Chapter 2 we introduce helpful background

material. In particular, a brief introduction to RL is provided in 2.1 followed by an

introduction to general OOD detection (2.2) and OOD detection in RL (2.3). The

chapter is concluded with an overview of previous work in OODD detection in Section

2.4 and dynamics models in Section 2.5. Next, we discuss the methodology in Chapter

3. In particular, in Section 3.1 we discuss some of the limitations of the previous

research and how the developed framework aims to solve these. Then, in Section 3.2

the developed framework is introduced and details are discussed. In Chapter 4 we

introduce the experiments conducted with the framework and provide the achieved

results. Finally, in Chapter 5, we discuss the achieved results, some limitations of

the developed framework and discuss further improvements and research that can be

conducted as future work.



Chapter 2

Background material

This chapter contains some background material helpful for understanding how the

developed OODD detection framework works and how it fits in the context of OODD

detection and DRL.

2.1 Brief introduction to RL

RL is a subdivision of Machine Learning (ML) that is closely related to decision-making.

In its simplest form, an RL problem is comprised of an environment and an agent that

interacts with the environment. The goal of the agent is to learn how to optimally

complete a given task through interactions with the environment.

There are different ways to model the environment. The two most popular ways are the

Markov Decision Process (MDP) [7] and the Partially Observable Markov Decision

Process (POMDP) [33]. The MDP is characterized by the states S and actions A spaces,

the reward function R and the environment dynamics:

p(s′,r|s,a) = P
{

St+1 = s′,Rt+1 = r|St = s,At = a
}
. (2.1)

Equation 2.1 is the result of the Markov property which is an important assumption

that underpins MDPs. It states that the future state depends only on the current one,

and not on the past states. The agent is characterized by a policy π(a|s) which gives

a probability distribution over actions conditioned on a given state. To learn how to

perform optimally on a specific task, the agent interacts with the environment to receive

a reward which is used towards computing an expected return. The goal is then to find

4



Chapter 2. Background material 5

a policy under which the expected return will be maximized. The return is defined as:

Gt = Rt+1 +Rt+2 + ...+RT = Rt+1 +Gt+1 (2.2)

In practice is is more common to work with a discounted return, defined as

Gt =
T−(t+1)

∑
k=0

γ
kRt+k+1, (2.3)

where γ is the discount factor. This is used to ensure that the return is finite.

A state value function is defined as the expected return of a particular state under a

specific policy π:

vπ(s) = E [Gt |St = s] . (2.4)

Hence, the goal of the agent is to find an optimal policy π∗ for which the value function

is maximized.

Often in the real world, the agent cannot observe the current state of the environment

directly. Instead, the observations can be noisy or incomplete. Such scenarios in RL

are modelled as a POMDP. Because the agent does not have a direct observation of the

environment’s true state, its policy cannot map directly from states to actions. Instead,

the agent forms a belief about the current state. That is achieved through keeping a

history of the states or through a probability distribution over the states. When the agent

observes a state, it updates its belief about the real state and maps that to an action.

In general, there are two types of RL: model-based and model-free. In the former, a

model of the environment p̂ is learnt and used for planning, whereas in the latter case,

no such model is explicitly used in finding the optimal policy.

DRL is responsible for much of the recent success of RL. As mentioned earlier, DRL

is a subfield of RL where Deep Learning methods are used. In general, DRL utilizes

Deep Learning architectures for parameterizing functions that approximate states and

actions. This is especially useful in cases where the state and action spaces are large

and complex so alternative methods would be incapable of solving the tasks.
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2.2 OOD detection in general

As discussed before, OOD detection is the problem of detecting data with an underlying

distribution that is different from the underlying distribution of the training data. This

problem is closely related to problems like anomaly detection (AD), novelty detection

(ND) and outlier detection (OD) [15]. In AD, the model is concerned with finding

abnormal instances. Abnormalities are often predefined or are assumed to be rare data

instances or whole categories of data. For example, in time series data, a point that has a

value that is extreme compared to surrounding points is considered to be anomalous and

would be detected as such by an AD model. ND deals with instances that belong to a

new class unseen during training. For example, if we train a model to recognise images

of cats and dogs, ND methods would detect all images that are not of cats or dogs. OD

is a more broad form of AD and detects all points that are significantly different from

the remaining points in a sample of data.

Despite the differences between these problems, in all cases, we can identify in-

distribution (ID) and OOD classes and the points belonging to these. Hence, techniques

from these problems are applicable to OOD detection. [65] recognizes four general

categories of OOD detection methods: classification-based, density-based, distance-

based and reconstruction-based. Generally, in classification-based methods, the softmax

probability is utilized to determine if data belongs to the ID or the OOD class [20,29,30].

In density-based methods, data points are considered to be OOD if their probability is

low according to a probability distribution of the ID data [32, 53, 55]. Distance-based

methods utilize clustering approaches. The distance between the data point and clusters

is used to determine whether a point is OOD [13,54,62]. Reconstruction-based methods

reconstruct data from a compressed representation. These models assume that the

reconstruction error for OOD data will generally be higher [66, 67]. Furthermore, in

time series data, there are also prediction-based models [18]. These models predict

future observations over a given horizon and then compare that to the actual observation.

The error between the two is used as the OOD decision factor [21, 47].

OOD detection is also related to one-class classification [52] as all of the training data is

assumed to belong to the ID class and the inference data may contain points belonging

to the OOD class. All one-class methods have one thing in common. They calculate an

anomaly score for the data and decide if a point is OOD based on a threshold which is
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normally determined via validation data [52]. The anomaly score could be based on the

distance or the magnitude of the error, depending on the model used.

2.3 OOD detection in DRL

Some of the OOD research in DRL has been focused on developing algorithms and

exploration strategies robust to OOD data. As such, these algorithms implicitly address

the problem of OOD detection. The authors in [64] develop a model that implicitly

detects OOD state-action pairs and penalizes their contribution to the model training

through regularization. To achieve this, the model uses Monte Carlo dropout [23] both

during training and inference. The variance in the predictions in T stochastic forward

passes is used as the regularization parameter. In [2], the authors penalize Q-value

functions for state-action pairs that are deemed OOD. For that, an ensemble [36] of Q-

value functions is used to estimate the epistemic uncertainty and during exploitation, the

lower-confidence bound of these estimates is used which penalizes OOD state-actions.

The proposed method in [39] utilizes bagging as a method for estimating the epistemic

uncertainty where a bag of Gaussian dynamic models is used to calculate a statistic.

The authors argue that a higher value of that statistic is indicative of an OOD state.

They then further devise a probability function using the statistic which is used for

regularization.

Other work has focused on explicitly detecting OOD states and state-action pairs. The

UBOOD framework [56] defines OOD state-acton pairs to be the state-action pairs for

which the estimated epistemic uncertainty is high as during training, the epistemic uncer-

tainty for ID state-action pairs is reduced. The authors evaluate three different methods

for estimating the epistemic uncertainty - Monte Carlo Concrete Dropout (MCCD) [24],

bootstrapping [51] and Bootstrap-Prior networks [50]. In the MCCD case, the model is

run T times to collect a sample of predictions and the uncertainty is calculated as the

variance in the predictions. For the bootstrapping and the Bootstrap-Prior network cases,

the models are comprised of shared input and intermediate layers and K output layers

called “heads”. To calculate the uncertainty, K boolean masks are generated which

select the output heads for each data point. The uncertainty is calculated as the variance

of the K outputs [56]. To calculate a threshold for the OOD data, the authors in [56] treat

the uncertainty of the ID data (training data) as a probability distribution. The threshold

is then set to τ = ū+σ(u) where ū is the mean of the calculated uncertainties of the
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training data and σ(u) is the standard deviation of these uncertainties. A state-action

pair is considered to be OOD if its uncertainty is greater than τ.

In [57], a classifier is developed that utilizes the entropy of the policy to detect OOD

states. The authors hypothesize that the entropy of the distribution of the actions is

reduced for states encountered during training (the ID states). They state that the entropy

of the policy for ID data should be less than the entropy of the policy of OOD data

given a successful training procedure. Hence, a decision boundary could be found that

separates the ID and OOD states, however, in practice, this decision boundary would be

soft and a perfect separation will not be possible [57].

2.4 OODD detection

The frameworks like [56] and [57] detect OOD states or state-action pairs. Such are

considered to be the states or state-action pairs that have not been observed during

training. The problem of OODD detection is different in nature. Here, we are interested

in detecting changes in the environment dynamics and not exclusively unseen states.

For example, in a simple grid world environment, we might observe all states during

training. Hence, a change in the dynamics in this simple grid world could be associated

with a change in the transitions dynamics from one state or state-action pair to another

state even if all states have been previously observed.

The authors of [46] propose changes to RL environments that can be used to generate

OOD data. The proposed changes are of two types: changes to the physical parameters

of the environments and the addition of corruptions to the observations (noise). The

former type closely resembles changes to the environment dynamics as the dynamics in

these environments is dictated by these parameters. Observational noise is not generally

associated with changes to the environment dynamics as in most real-world scenarios

observation noise is present when the dynamics of the environment is ID. However,

changes to the observation noise could potentially be considered as changes in the

environment dynamics as increasing the observation noise could have a negative impact

on the agent’s ability to perceive the environment and make good decisions. In [46], no

method for OODD detection was developed. Instead, the authors tested [56] with the

proposed benchmarks.
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The term “Out-of-Distribution Dynamics Detection” is mentioned for the first time

in [17]. The authors of the paper develop a model for OODD detection and a set of

benchmarks to evaluate the model on. The proposed benchmarks include the addition

of noise and drift but also changes to some of the properties of the environments. The

proposed model, Recurrent Implicit Quantile Network (RIQN) is based on the Implicit

Quantile Network (IQN) [16] which is a generative model that can learn an implicit

representation of the distribution of features and consequently, be used to generate

samples of this distribution. The authors in [17] further extend the IQN model with

a Recurrent Neural Network (RNN). The purpose of the RNN is to retain informa-

tion from past observations and use it for the purpose of predicting future states. The

model is also capable of predicting several steps ahead autoregressively. To prevent

the accumulation of error due to the autoregression, the authors of [17] use a Sampling

Scheduling approach [8]. The RIQN model accounts for the aleatoric uncertainty [17]

which is the inherent randomness of the data. To account for the epistemic uncertainty,

which is the uncertainty of the model due to the lack of training data, the authors use an

ensemble of RIQN models. To compute an anomaly score for a time point t, a set of

M autoregressive predictions are made for each model in the ensemble of size e. The

anomaly score is then computed as the average L1 distance between the prediction and

the true observation among the M× e predictions for time point t. During inference, a

cumulative sum (CUMSUM) [17] of the anomaly scores across time and a threshold

based on the CUMSUM are used for OODD detection. The authors of [17] also test a

modified version of the RIQN model that includes a history window, however, they do

not find it beneficial for the RIQN model.

Another framework for OODD detection is developed in [26]. It is comprised of a

forward dynamics model, next-state sampling, error calculation and anomaly scoring.

The forward dynamics model the authors use is based on Probabilistic Deep Neural

Networks which parameterize a probability distribution. The authors of [26] choose to

use a Gaussian distribution to model the next state. Hence, the forward dynamics model

takes the current state and action and outputs the mean and variance of the distribution

of the next state. The authors note that the probabilistic model models the aleatoric

uncertainty but not the epistemic uncertainty. To model the epistemic uncertainty, the

authors used bootstrapped ensembles where each member of the ensemble of size B is

initialized with different parameters and is trained on a different bootstrap of the training

set [26]. Next state sampling is used to sample states from the Gaussian distribution that
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is parameterized by the forward dynamics model. The authors refer to these samples as

particles. Each member of the ensemble generates K particles. The error between the

predicted state and the observed state is computed as the Mean Squared Error (MSE)

of all particles in each ensemble. In the end, an anomaly score for each time point

is calculated using an aggregation function over the computed prediction errors of

all members of the ensemble. The authors find that the minimum works best for the

aggregation function. During inference, the anomaly score is compared to a threshold

which is calculated via validation data. All predictions for which the anomaly score is

greater than this threshold are considered to be OOD. The authors consider different

methods for calculating the threshold such as the mean and maximum anomaly score of

the validation set.

2.5 Modelling the environment dynamics

Usually in RL, access to the true environment dynamics is not provided. Instead, the

true environment dynamics is hidden and the agent can only receive observations from

the environment based on the actions it takes. It is not uncommon, especially in model-

based RL, to learn a dynamics model of the environment which can then be used to

generate observations by providing it with actions. As we saw with [17] and [26], in

OODD detection, if we learn a dynamics model that can approximate the environment

dynamics, we can then assume OODD when the prediction error of this model is signif-

icantly high. The dynamics models in [17], [26] and [14] are examples of probabilistic

dynamics models that map a state or state-action to a probability distribution of the next

state. Models can also be deterministic. Such models do not generate a probability of

the next state but instead, the output is the predicted observation. Such models are de-

veloped in [49] and [48]. Furthermore, the dynamics models in [26], [14], [49] and [48]

only use the current state or state-action to predict the next state without a history of

observations. In contrast, the dynamics models in [25], [37] and [43] are examples

of dynamics models that use context (history), usually through a latent representation

generated by an RNN.

Other models that are capable of modelling the environment dynamics are sequential

modelling models based on the Transformer [63] architecture. Example of these include

Decision Transformer [12] and Trajectory Transformer [31]. These models are utilized

in the next token prediction task where they predict the next token autoregresssively.
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The tokens can be observed states, actions, rewards or a combination of these. Another

idea explored in this area is a BERT-style masking. BERT [19] is a popular model for

natural language understanding. It resembles a bidirectional Transformer encoder which

is pretrained and can be fine-tuned for specific tasks. One of the training objectives

of BERT is masked token prediction where some of the tokens in the sentence are

masked and the model tries to predict them using the unmasked tokens. This helps the

model learn how to understand the context of the tokens. Both UNI[MASK] [11] and

MaskDP [40] have utilized BERT-style masking in their sequential decision models and

demonstrate that this makes them viable dynamics models.

In particular, UNI[MASK] focuses on building a generalized model for sequence

modelling that can be used for tasks such as forward dynamics, inverse dynamics,

future inference, past inference, behavior cloning, etc. Different masking schemes

are investigated in [11] and the authors find random masking to be most effective for

training. For each sample trajectory, a masking probability is uniformly randomly

generated and then each token is masked with that probability. During inference, de-

pending on the specific task at hand, a specific mask is used that prompts the model

to fill in the required tokens, which are generated by stacking states, actions and rewards.

The main concept of MaskDP [40] is similar to the concept of UNI[MASK] [11],

namely, the model is a bidirectional transformer that is trained on the task of masked

prediction. However, MaskDP focuses on achieving high performance on three tasks:

goal reaching, skill promoting and serving as a model for offline RL. The input sequence

is comprised of alternating states and actions. Furthermore, the MaskDP model has

an encoder that encodes only the unmasked states and actions and then a decoder that

uses these encodings and the masked tokens to predict the masked tokens. In [40] the

masking ratio for a trajectory is sampled from a set.



Chapter 3

Methodology

We begin by discussing some of the issues and limitations of previous research in

the field and discuss how the developed framework aims at tackling these challenges.

Afterwards, the framework is introduced and all of its components are discussed in

detail.

3.1 Motivation

There are several limitations in the work in [17] and [26]. First, both publications

focus on developing prediction-based models for MDP environments. Neither of the

developed frameworks in these works has been tested in environments that are partially

observable. In fact, the framework in [26] is not capable of operating in such an en-

vironment. That is due to the fact that the prediction-based model the authors have

developed uses the observation of the current state and the action taken by the agent to

predict the next state. There is no notion of memory meaning that it is unlikely for the

model to be successful in a POMDP environment. The framework in [17] utilizes an

RNN to encode information about the past state, so in theory, it is capable of working

with POMDPs as having a notion about the past helps the model filter out noise and

make more accurate forward predictions.

Furthermore, previous work has only focused on deterministic environments. However,

stochastic environments are also common. The model in [26] assumes that the next

state distribution is Gaussian. For non-deterministic environments, this model would

only work if the stochasticity is Gaussian. Hence, this model is not appropriate for

non-deterministic environments due to the assumption of the next state distribution. The

12
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model in [17] does not make an assumption of the next state distribution. This is why

it makes M predictions for the next state in order to represent the predictive distribu-

tion [17]. Let’s assume that according to the non-deterministic dynamics, there are N

possible next states. However, only one of the N possible states would be observed at

time t +1 if the dynamics is ID. Furthermore, only a portion of the M predictions would

have correctly predicted the next state, with the remaining predictions contributing

to the total prediction error. Depending on the next state distribution, it is possible

that this prediction error is high enough for the model to label the next state as OOD.

However, the state would not be OOD according to the non-deterministic dynamics.

Hence, prediction-based models that utilize prediction error are limited by the sample

of predictions they make. Generally, if the prediction error between this sample and the

actual observations is low, the next state would be assumed ID otherwise OOD. This is

why the model in [17] might not be very suitable for non-deterministic environments.

Another limitation of the work in [17] and [26] is the method of calculation of the OOD

threshold. Neither work focuses explicitly on this method, but rather uses a property

of the validation error. In [26], the authors test different methods for calculating the

threshold including maximum validation error. However, neither work takes into con-

sideration the shape of the error distribution.

Finally, a limitation of models that parameterize probability distributions of the next

state is that they have to make assumptions about that distribution as is the case in [26]

where the next state is assumed to have a Gaussian distribution. As mentioned earlier,

this would be a problem if the environment dynamics is non-deterministic. However, it

could also be a problem in deterministic environments as the true next-state distribu-

tion might be significantly different from the parameterized distribution. This is why

assumptions regarding the next state distributions should generally be verified.

The framework designed in this project tackles the limitations mentioned above. By

design, the developed framework is reconstruction-based and operates with trajectory

snippets where the snippet is a fixed-size window of consecutive observations from

the environment. The framework reconstructs parts of the snippet and uses the recon-

struction error as an indication of OODD. This means that the framework is not limited

by a sample of predictions but by the quality of the reconstruction. Provided that the

dynamics model in the framework can understand the environment dynamics well, we
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Figure 3.1: Diagram of the developed OOD Dynamics Detection framework. The red

arrows follow the training procedure and are numbered in the order of the operations.

The green arrows follow the framework at inference time. The numbers denote the order

of operations. Dashed contours separate the different modules within the framework -

the Dynamics module, the Inference masks module and the Detectors module.

can assume that the reconstruction error would be low for snippets with ID dynamics

and higher for snippets with OOD dynamics. However, setting a threshold based on

this assumption might be limiting, hence, the framework also takes the shape of the

distribution of the reconstruction error into account when determining the thresholds

for OODD detection.

3.2 Framework

The developed framework is shown in Fig 3.1. It operates with trajectory snippets. As

mentioned previously, the snippet is a fixed-size window of consecutive observations

from the environment. Mathematically, this could be expressed as follows:

s = O1,O2, ...,O∆−1,O∆, (3.1)
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where s denotes a snippet that is of size ∆ and Oi denotes the ith observation in the

snippet. That means that the framework takes a snippet s as input and determines if

the dynamics inside the snippet is OOD or not. The framework is comprised of three

components: a Dynamics module, Inference masks module and a Detectors module. In

the following sections, each of these components is explained in detail. Note that in the

following sections, snippet and trajectory are used interchangeably.

3.2.1 Dynamics module

The Dynamics module is inspired by the UNI[MASK] [11] and MaskDP [40] models.

It consists of an encoder, masking utility, a dynamics model and a decoder. The purpose

of this module is to reconstruct a masked trajectory. The input to the module consists of

trajectories of observed states and optionally actions. The output consists of trajectories

of predicted states.

The module is designed to work with both continuous and discrete states and actions.

Any discrete states and actions are first one-hot encoded. Then, the state and action

embeddings are concatenated if actions are also part of the input. The combined em-

bedding is then masked. Continuous states and actions are represented by embeddings.

These embeddings are vectors of size equal to the number of features of the states or

actions.

Each trajectory is comprised of two parts: a context window and a reconstruction win-

dow. The context window provides a history of observations that the model can use to

help predict the masked tokens in the reconstruction window. This is why when masking,

the embeddings of the observations in the context window at the start of the trajectory

are always kept unmasked so that they are visible to the model. During training, random

masking is applied to the embeddings in the reconstruction window whereas, during in-

ference, a mask is provided by the Detectors module instead of randomly generating one.

To generate the masks for training, a masking ratio is randomly sampled from a set

of masking ratios, similarly to [40]. Using this ratio, the appropriate number of 1s

(masked) and 0s (unmasked) are mixed and shuffled to create a boolean mask for the

reconstruction window. A mask of 0s for the context window is then added at the start

of this mask to form the final mask for the trajectory.
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The mask is applied to the embeddings in the trajectory as follows. First, all embeddings

for which the value in the mask is 1 (meaning they are to be masked) have all entries

set to 0. Next, an extra dimension is added to all embeddings. The new entry is set to

the value of the corresponding entry in the mask for that embedding, meaning that a

masked embedding would become a vector with all entries equal to 0 except the last one

which equals 1. The idea is that the last entry serves as means to distinguish a masked

embedding from an embedding that has all its entries set to 0.

Having applied masking to the embeddings, all embeddings are then encoded using a

linear encoder. This transforms the embeddings into embeddings of a specified size.

This can enhance the feature representation and also reduce the dimensions in the case

of discrete input features. After this operation, the input for the dynamics models

consists of trajectories of embeddings of a specified number of dimensions.

Figure 3.2: Architecture of the gMLP model. The network is comprised of a stack of L

identical blocks. All projection operations are linear. The activation function used in the

gMLP block is GeLU. Also shown is the architecture of the Spatial Gating Unit (SGU).

The activation inside the SGU is SELU.

Unlike the architecture in [11] and [40], the architecture of the dynamics model here

is not a Transformer. Instead, a Gated Multilayer Perceptron Network (gMLP) [41] is

used, the architecture of which is shown in Fig 3.2. In the original publication [41], the



Chapter 3. Methodology 17

authors demonstrate that the gMLP is capable of achieving performance comparable to

the Transformer in vision and language tasks. In fact, the authors compare the gMLP

with BERT and find that on some Natural Language Processing (NLP) tasks, gMLP

outperforms BERT. As seen in Fig 3.2, the architecture is comprised of L stacked layers.

First, the input is normalized before passing it through a linear projection layer that

applies the linear transformation to the embeddings. The projected output is then passed

through an activation function. The used activation function is GeLU [27]. The output

is then processed by the Spatial Gating Unit (SGU) [41] before it is transformed back

to the original dimensions of the input to the gMLP block. Finally, the output of the

linear projection layer is added to the input to the gMLP block via a residual connection.

Here, the SGU is what makes this architecture different from ordinary neural networks.

The SGU resembles the output of linear gating and provides the model with similar

power to self-attention in the Transformer architecture, namely, cross-token communi-

cation [41]:

s(X) = X⊙ fW,b(X), (3.2)

where s(·) is the SGU, ⊙ is the Hadamard product and fW,b(·) is a linear projection.

This linear projection projects the input using a matrix W ∈ Rn×n where n is the length

of the sequence in the input, and a bias b ∈ Rn:

fW,b(X) =WX +b. (3.3)

Hence, the spatial projection matrix W takes the role of the self-attention matrix, with

the difference that it is static and not dynamically calculated based on the input like in

the Transformer. In [41], the authors further find it beneficial to split the input X into

two parts X1 and X2 along the dimension of the token embedding. Further to this, we

also add an activation function after the linear projection to introduce non-linearity. The

activation function used is SELU [35]. Hence, the gating function becomes

s(X) = X1⊙φ( fW,b(X2)), (3.4)

where φ(·) is the SELU activation. The output of the function in Equation 3.4 provides

the output of the SGU. One other difference between gMLP and the transformer ar-

chitecture is that the gMLP requires no positional embeddings as the SGU is able to

capture that information [41].
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Once the embedded trajectories are encoded, they are fed through the dynamics model

which produces the reconstructed trajectories. Finally, the reconstructed trajectories are

decoded using a decoder which puts the embeddings back in the original dimensions of

the observations.

The training loss function for the dynamics model depends on the input type. For

continuous state inputs, Mean Squared Error (MSE) is used. For discrete state inputs,

Cross-Entropy Loss is used instead. The loss is computed on the entire trajectory,

including the embeddings on unmasked positions. This ensures that the model is

capable of reconstructing the trajectory as a whole which leads to a better understanding

of the dynamics inside the trajectories, similarly to [40].

3.2.2 Inference masks module

This module generates inference masks which are the masks that are provided to the

Dynamics module at inference time. These masks have two purposes.

First, they provide a way to use the reconstruction error of the dynamics model as a

means of OODD detection. Consider a specific mask that we can use with the Dynamics

module and validation data. Then, we can compute the distribution of the errors in

the validation data given this mask. At inference time, we can use the same mask to

compute the error in the trajectory and compare that to the distribution of errors for

the validation data. An extreme error could be considered a sign of OODD. If random

masks are used for inference, we would have to learn the distribution of errors for all

possible masks. That would be difficult as the number of possible masks increases with

the size of the reconstruction window. In that case, we may have to resolve to use one

distribution of errors independent of a mask. That, however, may lead to inaccuracies

and bias which are the result of the different distribution of the errors between the masks.

Knowing the distribution of errors on a particular mask makes it easy to check if the

error for a trajectory is extreme given the mask.

Second, the inference masks can help with non-deterministic environments. In Section

3.1, we mentioned that the reconstruction-based approach is not disadvantaged in terms

of non-determinism. Consider a non-deterministic environment and a mask where all

tokens in the reconstruction window are masked. That in a way makes the model behave
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like a prediction-based model as the only provided states are in the context. In that case,

there might be multiple ways of filling in the masked states and the reconstruction error

could be high, depending on the actual observation. If we unmask one entry somewhere

in the reconstruction window, then the dynamics model is forced to predict a trajectory

that would fit around that unmasked state. Hence, the unmasked state constrains the

prediction the dynamics model can make.

Unmasking many states in the reconstruction window would constrain the model pre-

dictions more but could also lead to more accurate predictions when the dynamics

is OOD due to the generalization power of the model. Predicting a longer sequence

of masked tokens would be more difficult for a trajectory with OODD. Hence, the

inference masks have to be somewhat balanced: they should contain a low number of

unmasked positions in the reconstruction window while still having enough unmasked

states to constrain the predictions for non-deterministic environments.

Figure 3.3: Visualization of an inference mask of a trajectory. The context window is used

as a history and all positions are unmasked (value 0). It is of length 5 in the example.

The reconstruction window contains unmasked (0s) and masked positions (1s) and its

length is 11 in the example. The length of the snippet is 16.

The proposed module works as follows. It generates a certain number of masks per

number of unmasked positions in a range. This range is defined by the minimum and

maximum number of unmasked positions which are controlled through hyperparameters.

For example, if we do not expect any non-determinism, we may use just a few unmasked

positions, otherwise, we might want to use more to greater constrain the predictions.

Given the range of the number of unmasked positions, we could expect that masks with

more unmasked positions will potentially have a lower error as the higher number of

unmasked positions would provide extra information for the reconstruction. To promote

masks with fewer unmasked positions, a regularization of the following form is used to

adjust the mask error:

εadj = Nβ
ε, (3.5)

where ε is the reconstruction error on the validation data, N is the number of unmasked
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positions for the given mask and β is the regularization parameter. If β = 0, then the

error is not adjusted. If 0 < β < 1, the mask error is adjusted. This regularization

forces masks with more unmasked positions to have lower errors in order to be selected.

In the end, the top M masks with the lowest εadj error are selected. These masks are

then provided to the Detectors module where a detector is created for each mask. A

visualization of an inference mask can be seen in Fig 3.3. The Inference masks module

only runs during training and is not used during inference.

The reconstruction error here is calculated with the same loss function as the loss

function used by the Dynamics module. However, the error here is only computed on

the masked observations inside the trajectory and not on the entire snippet. This ensures

that the masks are compared fairly as otherwise, masks with more unmasked states

would tend to have a lower error due to the the more unmasked positions.

3.2.3 Detectors module

The role of this module is to decide if the dynamics inside a given snippet is OOD

at inference time. Commonly, this decision is based on a threshold derived from the

anomaly score on a validation set. One common way of setting the threshold, similar

to the method [56], is τ = µ+ kσ where µ is the mean validation score and σ is the

standard deviation of the validation score. Another way of setting the validation score,

used in [26], is to set it to some constant times the maximum validation score in the

validation data. Both of these approaches can work well in specific scenarios. The

former works well if the distribution of scores is approximately Gaussian. The latter

one works best when the distribution of the validation scores is relatively compact and

does not have a long right tail. The developed Detectors module here does not make

assumptions regarding the distribution of the validation errors and instead uses the

shape of the distribution of the errors to decide if a snippet contains OODD.

The Detectors module contains M detectors equal to the number of inference masks gen-

erated by the Inference masks module. Each detector is associated with one inference

mask. During training, the generated inference masks are given to the Detectors module

which fits a detector on each of the inference masks. The fitting operation involves

computing the distribution of the reconstruction errors on the validation data given the

inference mask, finding low-density regions in that distribution and saving intervals of
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errors that correspond to the OOD regions.

At inference time, the detector takes a snippet and sends the inference mask and the

snippet to the Dynamics module which returns back the reconstructed trajectory. The

error is then calculated similarly to how it is calculated in the Inference masks module.

The calculated reconstruction error is then checked against the saved error intervals. If

the error is found to be inside an OOD interval, the detector detects the dynamics inside

the snippet as being OOD. Each trajectory is tested by every detector. In the end, if one

detector detects the snippet’s dynamics as OOD, the snippet is deemed to have OODD.

As mentioned earlier, the detectors make no assumptions regarding the distribution of

the errors, hence, thresholds are not set via statistical properties of the distribution of

the validation errors. Instead, a method is developed to detect low-density error regions

in the distribution of the errors. Because few of the validation errors are located in the

low-density validation error regions, the assumption is that if the error of a snippet at

inference is located in these regions, then we can consider this error atypical and label

the snippet OOD.

As explained earlier, the detectors in the Dynamics module find OOD intervals which

are intervals of values of reconstruction errors that should be considered OOD. These

intervals are of the form [start;end] where start and end denote the beginning and

ending of the interval respectively. To find these intervals, the detectors first use an

algorithm that finds the errors that are in the low-density regions of the distribution of

the reconstruction errors in the validation data before using these errors to compute the

OOD intervals. A pseudocode of this is found in Algorithm 1. To achieve this, we first

sort the errors by their value. Then, the algorithm finds all errors in a window around

error i such that this window contains the k closest errors to error i that are smaller and k

closest errors to error i larger than it. The value of the error is calculated as the average

difference between consecutive points in the region. The idea is that if an error is in a

dense region, this value would be small. Contrary to this, if error i is in a low-density

region, this value would be relatively high. If k is too small, then only immediate

neighbors are considered and it would be difficult to estimate the density of the region.

If k is too big, then errors in a low-density region can contain in their windows parts of a

dense region which would skew the calculations. Instead, multiple values of k are used

that range from 1 to max win. max win is calculated as 1
2 × rate× len(errors), where
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rate defines the rate of the validation errors which are located in the low-density regions

of the distribution of the validation errors. Having calculated the value of each error i

for all k ∈ 1, ...,max win, we combine these values by taking their average. The final

value determines the density of the region error i is located in. High values indicate low

density. In the end, we choose the top 2×max win errors with the highest values to

define the OOD regions. Note that this corresponds to the chosen percentage of errors

in low-density regions by the rate hyperparameter.

Algorithm 1 Find errors that would define OOD intervals
Input: rate, max horizon, errors

v← list

max win← 0.5× rate× len(errors)

errors← sort(errors)

for k in range(1,max(max win,max horizon)+1) do
for i in range(len(errors)) do

e← all k errors before and after error i and error i

d← average difference between two consecutive errors in e

v[i]← the mean between previous values of v[i] and d

end for
end for
ood errs← the 2×max win errors with highest v

ood errs← sort(ood errors) by original index in the sorted errors

Output: ood errors

Having found the errors in the low-density regions, the next step is to define the OOD

intervals in the form [start;end]. Algorithm 2 defines these intervals. Essentially, the al-

gorithm defines an interval to be a subsequence of consecutive errors in the low-density

regions where these errors must be consecutive in the original list of sorted errors. After

finding all errors in an interval, the start is then defined to be the value of the smallest

error in the subsequence and end is defined to be the value of the next largest error in the

original sorted list of errors after the largest error in the subsequence. Some corrections

are also made, such as, ensuring that the last interval ends at infinity. One correction

for the calculated intervals is performed at the end of the algorithm where if the length

of the interval is below min dist then that interval is removed from the detector. This

helps keep only significantly big intervals.
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Figure 3.4: OOD intervals found by the algorithm (in red) using an OOD rate of 0.05.

The Gaussian distributions used for the samples have means of 0 and 10 and standard

deviation of 2. The absolute values of the samples have been used.

An example of the OOD intervals found by the Detectors module can be seen in Fig

3.4. There, the errors are generated by taking the absolute values of samples from

two Gaussian distributions with means of 0 and 10 and a standard deviation of 2. The

found OOD intervals are shown in red. You can observe that the method detects OOD

intervals between the peaks of the two distributions where the density of errors is low,

and at the tail of the Gaussian distribution with a mean of 10. Note, the last interval

goes to infinity (displayed finite in the graph). This shows that the developed method of

finding OOD intervals in the distribution of the errors takes into account the shape of

the distribution.
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Algorithm 2 Find OOD intervals
Input: ood errs, min dist, errors

intervals← list

start← ood errs[0]

end← ood errs[1]

for i in range(1, len(ood errs)) do
if ood errs[i].index == end.index+1 then

end← ood errs[i]

else if start.index == end.index and end.index! = len(errors) then
start← ood errs[i]

end← ood errs[i]

else
if end.index == len(errors) then

intervals.append([start.value,∞])

else if start.index == 0 then
intervals.append([−∞,end.value])

else
intervals.append([start.value,ood errs[end.index+1].value])

end if
end if

end for
if end.index == len(errors)−1 then

intervals.append([start.value,∞])

else
intervals.append([start.value,ood errs[end.index+1].value]])

intervals.append(ood errs[len(ood errors)].value,∞)

end if
for all interval in intervals do

if width of the interval < min dist then
remove interval from intervals

end if
end for

Output: intervals



Chapter 4

Experiments and results

4.1 Experiments with noise and perturbations

4.1.1 Purpose and setting of the experiments

This set of experiments aims to evaluate the framework’s performance in environments

where the dynamics is POMDP. It tests how the amount of change in the dynamics of

the environment and the levels of observation noise affect the framework’s performance.

These experiments are conducted in two classic control environments from Gymna-

sium: MountainCar and CartPole. In the MountainCar environment, a car sits at the

bottom of the valley. The goal is to reach the top where the flag is located. See Fig

4.1. There are 3 possible actions that the car can take: accelerate left, accelerate right

or do not accelerate. Accelerating to the right only does not solve the problem as the

car does not have enough force to climb the hill. Instead, the agent has to learn how

Figure 4.1: A frame in the MountainCar

environment

Figure 4.2: A frame in the CartPole en-

vironment

25
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to gain momentum by driving back and forth. In the CartPole environment, there is a

cart with an attached pole that sits upright. The pole is attached using an un-actuated

joint. The goal for the agent is to balance the pole for as long as possible (within

a time limit). To achieve this, the agent can take 2 actions: push the cart to the left

and push the cart to the right. A frame of the visualized environment is shown in Fig 4.2.

Both MountainCar and CartPole environments are MDPs. The observations in Moun-

tainCar are in the form of a vector with two entries: the position of the car on the

x-axis and velocity. In CartPole, the observations are comprised of 4 entries: cart

position, cart velocity, pole angle and pole angular velocity. To turn the environments

into POMDPs, they have been modified to add noise to the observations generated from

a noise distribution. In this experiment, the noise distribution is the Gaussian distribu-

tion with a mean of 0 and some standard deviation (st.d.). The values of the standard

deviation used in these experiments are 0.001, 0.005, 0.01, 0.02, 0.05. In MountainCar,

the noise is added to the position component of the observation. Perturbations to the

dynamics of this environment are made to the force and the gravity constants with

default values of 0.001 and 0.0025 respectively. To create perturbations, these values

are multiplied with a perturbation constant. The perturbation constants used for these

experiments are [0.005,0.01,0.1,0.2,0.5,0.75,0.9,0.95,1.05,1.1,1.25,1.5,2,3]. For

example, multiplying the force by 0.95 is equivalent to reducing it by 5% which in this

case would be considered a small perturbation. Multiplying the force by 2 is equivalent

to increasing it by 100% which would be considered a big perturbation. In CartPole, the

noise is added to all components of the observation. Perturbations to the environment

dynamics are made to the gravity and length constants with default values of 9.8 and

0.5 respectively. To create the perturbations, these values are also multiplied with a

perturbation constant. For gravity, the constants used in the experiment are the same as

the ones used in MountainCar. For length, which resembles the length of the pole, the

multipliers are [0.2,0.4,0.5,0.6,0.7,0.8,0.9,1.1,1.2,1.3,1.4,1.5,1.6,1.8].

In total, 5 models were trained for both MountainCar and CartPole, each on the en-

vironment with different noise values. Each model used a context window of size 5

and a reconstruction window of size 27, meaning that the snippets were of size 32.

Ten inference masks were used, each with a number of unmasked positions in the

reconstruction window between 2 and 5. The masking rate for the random masks the

Dynamics module generates was set to 0.9. Drawing it from a set of rates showed to
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degrade the performance in preliminary tests. In the dynamics model, 24 layers of

gMLP blocks were used. A full list of hyperparameters for the framework used in

the experiments with the MountainCar environments can be found in Appendix A.2.

For the framework in the experiments with the CartPole environments, a list of the

hyperparameters is provided in Appendix A.3.

To collect data from both the MountainCar and CartPole environments, trained DQN

agents were used. The training and validation sets in all experiments were comprised of

200 and 50 episodes of the environment respectively. The testing data in MountainCar

was comprised of 50 episodes with a change in the environment dynamics injected

between steps 20 and 70 in the episode, and 50 episodes with no changes in the

dynamics. For CartPole, the testing data was comprised of 200 episodes with a change

in the dynamics injected randomly between steps 150 and 250. The dynamics model in

each instance of the framework for the MountainCar and CartPole environments was

trained for 100 and 30 epochs respectively. The models with the lowest validation error

were saved and used.

4.1.2 Results

4.1.2.1 Results for MountainCar environments

The results of the experiments with the MountainCar environment are shown in Fig 4.3.

In all plots, the x-axis is the perturbation multiplier and the y-axis is the metric used for

evaluation. In the plots, each line corresponds to an environment with a specific amount

of noise, dictated by the standard deviation in the Gaussian distribution.

When it comes to OODD detection, the precision of the ID trajectories is an impor-

tant metric. Low precision indicates that many OOD samples are detected as ID. In

safety-critical systems, that would be a problem as not detecting OOD snippets could

be a health hazard. Looking at the plots we can observe that the precision of the ID

trajectories is generally higher for the environments with less noise: st.d. of 0.001,

0.005, 0.01, and higher for the environments with st.d. of 0.02 and 0.05. We can also

see that the precision drops down when the perturbation in the dynamics is low (up

to +/- 25%). For bigger changes in the dynamics, the precision tends to reach a value

above 0.9, around 0.97 for environments with lower amounts of noise. Interestingly,

perturbations to the force seem to affect the precision more than perturbations to the
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Figure 4.3: Results of the experiments with the MountainCar environments

gravity. Namely, we can observe that the precision for the ID trajectories when the force

is small and the noise is somewhat bigger (st.d. 0.02 and 0.05) is very low: around

0.53 for the environment with noise st.d 0.05, whereas, the precision is higher for the

same environment when the perturbation is to the gravity. In fact, all environments

show a positive trend in the precision of the ID snippets as the perturbation to gravity is

increasing.

We evaluate the performance of the model in the task of OODD detection using the

F1-score of the OOD trajectories as this is a standard metric for performance on OOD

detection tasks and has been used in previous research [26]. Looking at the subplots, we

can see that the F1-score was high, around 0.97 for environments with low to moderate

noise levels (st.d. of 0.001, 0.005, 0.01) and a larger perturbation to the dynamics such

that the force is reduced by more than 25%. For big perturbations to the force such that

the force is increased by more than 25%, the F1-score averaged around 0.85 for the

same environments. For the environments with noise with st.d. of 0.02 and 0.05, the

F1-score was lower. The maximal F1-score achieved by the environment with noise st.d.

of 0.05 was around 0.4 when the force was small (big perturbation to the dynamics).

Similarly to the precision results for the ID snippets, the F1-score increased for all
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environments as the perturbation to the force increased in the positive direction (when

the force increased). In the gravity plot for OOD trajectories, we can see that the plot of

the F1-score had a similar shape for all environments. The difference is in the values,

namely, the environments with higher noise st.d. have lower F1-scores.

These results show that the developed framework is capable of achieving high perfor-

mance in environments where the noise levels are low to medium (noise with st.d. of up

to 0.01 in the experiments) and the perturbations are medium to high (at least +/-25%

the original value). In such scenarios, the framework can achieve an F1-score for the

OOD trajectories and precision of the ID snippets of around 0.97.

4.1.2.2 Results for CartPole environments

Figure 4.4: Results of the experiments with the CartPole environments

The results of the experiments with the CartPole environment are shown in Fig 4.4.

Similarly to the results for the MountainCar environment, in all plots, the x-axis is the

perturbation multiplier and the y-axis is the metric used for evaluation. In the plots,

each line corresponds to an environment with a specific amount of noise, dictated by

the standard deviation in the Gaussian distribution.
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Here we can observe that the precision of the ID trajectories and the F1-score of the

OOD trajectories with perturbations to the length of the pole are high when the length

of the pole has been increased. In particular, the smaller increases in the length of

the pole are detectable in environments with lower amounts of noise. For example,

in the environment with noise with st.d. of 0.001, the achieved F1-score of the OOD

trajectories was 0.95 and the achieved precision for the ID trajectories was 0.93. In

all environments, the precision of the ID snippets for bigger increases in the length

of the pole (≥+50%) is above 0.95. The highest F1-score of the OOD trajectories is

achieved in environments with lower amounts of noise (st.d. of 0.001 and 0.005) for a

40% increase to the length of the pole. In both cases, the F1-score is above 0.97. The

F1-score for the other environments is lower. We can also notice that the F1-score tends

to decrease as the length of the pole increases. We can explain this by the fact that when

the length of the pole increases considerably, the agent tends to quickly fail and the

episode terminates. This leads to a low number of OOD trajectories compared to ID

trajectories which reduces the score. Finally, we can also notice that the framework has

difficulty detecting a decreasing length of the pole. In fact, both the precision for the

ID trajectories and the F1-score of the OOD trajectories are high (around 0.99) when

the length of the pole is 20% the original length. In this case, the agent does not fail so

the number of the OOD trajectories remains high which is why the score is also high.

Finally, we note that smaller decreases in the length of the pole seem to be undetectable

by the framework.

The results with perturbations to the gravity are rather interesting. In all cases, both the

precision of the ID trajectories and the F1-score of the OOD trajectories are low. We

believe that this is due to the value of the gravity having little effect on the performance

of the agent.

The poor results for the perturbations to the gravity and the results for the small pertur-

bations to the length of the pole (especially when the length is decreased) demonstrate

that the framework is mostly capable of detecting changes in the environment when

these changes affect the performance of the agent. In fact, increasing the length of

the pole has the largest impact on the performance of the agent. When the length

increases significantly (≥+50%), the agent tends to fail to balance the pole which leads

to the pole falling and the episode terminating. Perturbations to the gravity and small
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Figure 4.5: A frame in the Grid World environment. The black circle is the agent’s

location and the green square is the goal state.

decreases in the length of the pole do not affect the performance of the agent enough to

trigger a detection.

4.2 Experiment with a non-deterministic environment

4.2.1 Purpose and setting of the experiment

One of the design goals of the developed OODD detection framework was to create a

framework, capable of operating with non-deterministic environments. The purpose

of this experiment is to investigate if the framework can learn the non-deterministic

dynamics of the environment and successfully detect trajectories with OODD.

The environments in this experiment are discrete Grid World environments consisting

of a 10×10 grid. The goal of the agent in this environment is to reach a pre-defined

goal state which is the bottom right square of the grid. See Fig 4.5. The starting position

of the agent is in the top left corner. The agent can take one of 4 actions: move up,

move down, move left, move right. If the action that the agent takes leads to a position

outside of the grid, the agent is prevented from moving in that direction and remains

in its previous position. The environment is non-deterministic so when the agent takes

an action, it will go in the desired direction with probability 1− p and the opposite

direction with probability p, which we call the stochasticity parameter. Further to this,
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the observations the agent receives are noisy, namely, there is a 0.1 probability that the

agent observes one of the 4 neighboring positions. One perturbation to the dynamics

of the environment was added such that when this perturbation is activated, the map

between the actions and directions of movement changes. This map maps an action

with a direction that is left of the direction of the original map. For example, move up is

mapped with the direction of move left.

To conduct the experiment, 4 environments with different values for p were used. The

used values of p were 0.1, 0.2, 0.3 and 0.4. Perturbations to the environment dynamics

are made to the map between the actions and the directions of movement. Namely, the

directions change by 90 degrees so that move up moves the agent to the left, move left

moves the agent down, etc. The trained frameworks have 48 layers of gMLP blocks, a

context window of size 5 and a reconstruction window of size 8. Each used 10 inference

masks with 3 to 6 unmasked positions. The masking rate for the random masks of the

Dynamics module was 0.8. The top 1% of errors in the lowest density error regions

define the OOD intervals in the Detectors module. In this experiment, apart from the

observed states, the actions of the agent were also used. A full list of hyperparameters

for the framework used in the experiments with the Grid World environment can be

found in Appendix A.4.

To collect data from the environments, a trained Q-Learning agent was used. For each

environment, 200 episodes of data were used for training and 50 for validation. The

test data consist of 50 episodes with ID dynamics and 50 episodes with OODD. The

episodes with OODD are generated by perturbing the dynamics between steps 5 and 9

of the episode.

4.2.2 Results

The results of the experiment are shown in Fig 4.6. There you can see the recall of the

ID trajectories and the F1-score of the OOD trajectories for the 4 environments with

different values of the stochasticity parameter.

An important metric for non-deterministic environments is the recall of the ID trajec-

tories. The recall is defined as T P
T P+FN , where T P is true positives and FN is false

negatives. A high recall means that the count of false negative ID trajectories is low.



Chapter 4. Experiments and results 33

Figure 4.6: Results for the experiments with Grid World environments

Hence, a low number of ID trajectories have been predicted to be OOD. The high

recall of 0.99 of the ID trajectories shows that the framework is capable of identifying

correctly ID trajectories of a non-deterministic environment.

We also evaluate the framework on the OODD detection task using the F1-score for

the OOD trajectories. We can observe that the score is highest, about 0.98, for the

environment with the smallest stochasticity parameter which denotes the probability

that the agent does not move in the direction of the action but the opposite direction

due to the non-determinism of the environment. The F1-score for the environments

with a value of the stochasticity parameter of 0.2 and 0.3 remains high: 0.79 and 0.9

respectively. The drop in the performance for the former one is rather unexpected and is

likely due to a problem with the training of the model or with the data and would require

further investigation. The F1-score for the environment with a value of the stochasticity

parameter of 0.4 is rather low: 0.36. This result would normally be concerning, however,

we can offer an explanation. Since the stochasticity parameter controls the probability

that the opposite direction is taken, a value near 0.5 would mean that there is about

equal probability that the agent moves in either direction and so we can expect that the

agent would often oscillate around one location. The added noise makes it appear in

many positions around that location. When the dynamics is changed, the agent would

continue oscillating around the same location (even if the directions are changed). This

makes it difficult to distinguish between the two, which can explain the low F1-score.
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The high F1-score for the OOD trajectories in the environments with lower values of

the stochasticity parameter, combined with the high recall of 0.99 for the ID trajectories

demonstrates that the developed framework is capable of operating in non-deterministic

environments and that it is a step towards building OODD detection methods for such

environments.



Chapter 5

Conclusions

In this project, we investigated the problem of Out-of-Distribution Dynamics Detection

in Deep Reinforcement Learning. We began by introducing the problem and explain-

ing why it matters. We then presented some of the background material related to it,

including previous work in the area and more general approaches to OOD detection.

We also discussed models that can model the environment dynamics. After this, we

looked at some limitations in the previous research and identified how the proposed

framework differs from the previous work before presenting the developed framework.

We discussed each of the components of the framework in detail, explaining their

purpose, how they relate to the other components and how they works. Afterward, we

tested the proposed framework in two different experiments. The first experiment aimed

to test the performance in POMDP environments and the amount of perturbation that

was detectable by the framework. The second experiment tested whether the framework

can operate in a non-deterministic environment.

The results from the first experiment demonstrated that the developed framework is

capable of detecting changes in the environment if these changes affect the performance

of the agent as evidenced by the results in the CartPole environment. There, changes

to the gravity constant and small changes to the length of the pole did not affect the

agent’s ability to balance the pole. Neither did they change the way the agent balanced

it. The results further demonstrated that the framework is suitable for detecting OOD

trajectories in POMDP environments where the changes to the environment dynamics

is reflected by the performance of the agent. In particular, in the MountainCar environ-

ments, the model achieved a high F1-score of 0.97 in environments with low to moderate

observation noise and perturbations to the dynamics of the environment, where the

35
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perturbation was in the form of a change to a parameter of the environment of at least

25%. For environments with high levels of noise, or when the perturbations to the

dynamics were small, the framework performance was lower, namely, the F1-score was

below 0.4. In the CartPole environments, the agent managed to achieve high precision

for the ID trajectories and high F1-score for the OOD trajectories when changes of at

least +50% or−60% were made to the length of the pole. In particular, the precision of

the ID trajectories was above 0.95, while F1-score for OOD trajectories reached above

0.97 for environments with low observation noise (st.d. 0.001 and 0.005). We noted

that the F1-score for OOD snippets was decreasing in the results when the pole length

was increasing due to the number of OOD trajectories decreasing. This is caused by the

termination of episodes when the agent fails to balance the pole. The higher number

of ID trajectories means that the precision of the OOD trajectories was lower due to

the higher number of false positives (FP) compared to the number of true positives

(TP). Furthermore, we believe that small changes to the dynamics are hidden by the

observation noise and so they will always be difficult to detect in POMDP environments.

Environments with high levels of observation noise are problematic in general as agents

also struggle to solve these environments. Hence, OODD detection is also difficult in

such environments as evidenced by the results. Hence, the results in this experiment

demonstrate that the developed framework is suitable for detecting changes in the

environments with low to moderate levels of observation noise, as long as the changes

in the environment affect the performance of the agent. We argue that changes that

affect the performance of the agent are more crucial as such changes could for example

be a health hazard in the case of autonomous vehicles and lead to a loss of revenue in

the case of trading bots.

The second experiment demonstrated that the framework is capable of working with

non-deterministic environments. In particular, the achieved high recall of 0.99 for

ID trajectories shows that the framework can correctly identify the non-deterministic

dynamics from the training examples and label trajectories such trajectories as ID.

The achieved OODD detection performance in this experiment was also satisfactory,

achieving F1-score of 0.9+ in two cases and 0.79 in one. The F1-score was also low

for the environment where the probability that the chosen action does not move the

agent in the desired direction was 0.4. We explained that this result is most likely due

to the inherent randomness of the movements when this value is close to 0.5 as is the

case of 0.4. Nevertheless, the high F1-scores for OOD trajectories in the other cases,
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combined with the recall of 0.99 for ID trajectories demonstrates that the developed

framework is a step towards developing methods for OODD detection that can work

with non-deterministic environments.

Apart from the advantages of the developed framework, namely, the ability to work

with POMDP environments and non-deterministic environments, we identify two disad-

vantages of the current framework. First, the current framework cannot detect changes

to the dynamics in a non-deterministic environment if that change is to the stochasticity

of the dynamics. For example, the framework cannot detect changes in the case where

the probability of observing a particular state as the next state increases (given that it

was not 0 to begin with). This is because OOD trajectories (trajectories under the OOD

dynamics) would also be possible under the ID dynamics and the framework would not

be able to detect the OOD trajectories as such. In order to detect these, the framework

would have to detect changes to the probability distribution of the next states. Hence, as

future work, the framework could also be extended to detect such changes.

Second, we note that the trajectory should contain enough of the perturbed dynamics

for it to be detectable. What this means is that there is normally a lag between the

moment the dynamics changes and the moment the framework can detect it. While

using smaller snippets can reduce this lag, we believe that using the framework purely

in a reconstruction-based manner would not offer the best solution for eliminating the

lag. Therefore, as future work, the framework can be extended to also operate partially

as a prediction-based model. This could be achieved with the introduction of a second

type of mask, namely, prediction masks which would be used for predicting a number

of steps forward. Then, the framework can use the prediction masks as a method of

detecting changes early and later confirming them using the current methodology.

As further future work, we would also like to improve the stability of the framework

as at times, the dynamics model in the Dynamics module may not converge optimally,

leading to decreased OODD detection performance. One possible approach would be

to build an ensemble of frameworks that work together and combine the decisions from

their detectors to provide a unanimous decision. Furthermore, we are interested in

conducting a study on the effects different parameters have on the performance and

flexibility of the framework. For example, we would investigate whether decreasing the

reconstruction window can reduce the lag without sacrificing the performance of the
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framework.
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Appendix A

Hyperparameters for the frameworks

used in the conducted experiments

A.1 Hyperparameters description

A description of the hyperparameters of the OODD detection framework are provided

in Table A.1

Hyperparameter Description

layers Number of layers of gMLP blocks for the dynamics model in

the Dynamics module

states input size The number of dimensions of the states vector if continuous

or the number of states in the environment if discrete

states output size The number of dimensions of the observations produced by

the model

embed size The size of the embeddings produced by the encoder.

context window size Length of the context window in the input snippet

window size The length of the snippet

actions input size The number of dimensions of the actions vector if continuous

or the number of actions if discreet. It is set to None if no

actions are used

discrete actions Whether the actions are discrete (if used)

discrete states Whether the states are discrete

masking rate A list of masking rates used by the Dynamics module for

creating random masks
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train loss fn The loss function used for training the Dynamics module

inf mask err fn The error function used to calculate the error of the inference

masks by the Inference masks module

num inf masks Number of inference masks that are selected in the end by the

Inference masks module to be used by the Detectors module

min unmasked Minimum number of unmasked positions in the reconstruc-

tion window of the generated inference masks

max unmasked Maximum number of unmasked positions in the reconstruc-

tion window of the generated inference masks

num per unmasked Number of masks generated for each number of unmasked

positions in the reconstruction window

pwr The value of β, the regularization parameter in the Inference

masks module

detection err rate The rate of validation errors in low-density regions of the

distribution of the validation errors per inference mask

max horizon The maximum size of the window used to calculate the den-

sity of the region in which a given error of the validation set

is located

min error dist The minimum length of an OOD interval

detector loss fn The loss function used by the Detectors module to calculate

the reconstruction error of a trajectory

Table A.1: Description of hyperparameters of the OODD detection framework

A.2 Hyperparameters of the framework used in the ex-

periments with the MountainCar environments

The hyperparameters for the OODD detection framework used in the experiments

with the MountainCar environments can be found in Table A.2. Description of the

hyperparameters is available in Table A.1.

Hyperparameter Value

layers 24
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states input size 2

states output size 2

embed size 32

context window size 5

window size 32

actions input size None

discrete actions False

discrete states False

masking rate [0.9]

train loss fn MSE

inf mask err fn MSE

num inf masks 10

min unmasked 2

max unmasked 5

num per unmasked 10

pwr 0.27

detection err rate 0.05

max horizon 50

min error dist 0.05

detector loss fn MSE

Table A.2: Hyperparameters for the framework used in the MountainCar environments

A.3 Hyperparameters of the framework used in the ex-

periments with the CartPole environments

The hyperparameters for the OODD detection framework used in the experiments with

the CartPole environments can be found in Table A.3. Description of the hyperparame-

ters is available in Table A.1.

Hyperparameter Value

layers 24

states input size 4

states output size 4
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embed size 32

context window size 5

window size 32

actions input size None

discrete actions False

discrete states False

masking rate [0.9]

train loss fn MSE

inf mask err fn MSE

num inf masks 10

min unmasked 2

max unmasked 5

num per unmasked 10

pwr 0.27

detection err rate 0.05

max horizon 50

min error dist 0.05

detector loss fn MSE

Table A.3: Hyperparameters for the framework used in the CartPole environments

A.4 Hyperparameters of the framework used in the ex-

periments with the Grid World environments

The hyperparameters for the OODD detection framework used in the experiments

with the Grid World environments can be found in Table A.4. Description of the

hyperparameters is available in Table A.1.

Hyperparameter Value

layers 48

states input size 100

states output size 100

embed size 32
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context window size 5

window size 13

actions input size 4

discrete actions True

discrete states True

masking rate [0.8]

train loss fn Cross-entropy loss

inf mask err fn Cross-entropy loss

num inf masks 10

min unmasked 3

max unmasked 6

num per unmasked 6

pwr 0.27

detection err rate 0.01

max horizon 50

min error dist 0.05

detector loss fn Cross-entropy loss

Table A.4: Hyperparameters for the framework used in the Grid World environments
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