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Abstract

As artificial intelligence becomes more integrated into our society, the need for strong

cooperation between agents, both virtual and real, becomes increasingly evident. Co-

operative multi-agent reinforcement learning looks to promote vital cooperative capa-

bilities by training agents on specific tasks across a range of environments, such that

agents may learn to solve the task through cooperation. However, the current landscape

of cooperative MARL environments on which agents can be trained and develop these

capabilities is limited, hindering progress in the field. This project presents three novel

environments each built for testing and developing different cooperative capabilities,

simultaneously expanding on the collection of environments used in cooperative MARL

research. Designed with cooperation and flexibility at their core, these environments are

carefully designed, presented and benchmarked to act as a catalyst for future research

and we hope will provide a valuable contribution to the cooperative MARL research

community for many years to come.
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Chapter 1

Introduction

1.1 Motivation

Traditional Reinforcement Learning (RL) has thrived and gained much popularity in

recent years, thanks to a combination of computational advances as well as a passion-

ate research community, it has achieved a multitude of impressive and recognisable

achievements across a range of sectors, perhaps most popularly performing impres-

sively in multiple games (Brown and Sandholm (2018); Schrittwieser et al. (2020);

Wurman et al. (2022); Bakhtin et al. (2022)). However many of these problems are

intrinsically individual-focused and solitary, with a single machine tackling either a

win/loss situation like in Chess, Shogi or Poker, or a non-cooperative environment like

in speeding up matrix multiplication algorithms (Fawzi et al. (2022)). While these

applications are important and exciting in their own right, for AI to be functionally and

safely integrated into multiple parts of society it needs to develop more cooperative

intelligence to engage with other agents in multi-agent settings and, especially, other

humans (Dafoe et al. (2021)).

At its core, Multi-Agent Reinforcement Learning (MARL) is an extension of tradi-

tional reinforcement learning. In extending RL to the multi-agent case we encounter

new challenges not present in traditional RL such as equilibrium selection problems,

multi-agent credi assignment or the non-stationarity of environments from the agent’s

perspective. Here, rewards for an agent no longer only depend on the environment

and the action taken from that agent, but also the actions of other agents (Canese et al.

(2021)). The challenges in MARL often require more complex solutions as agents need

to develop policies that are viable and robust not only as the environment changes but

also as the strategies of other agents change.

1



Chapter 1. Introduction 2

As the results and efficacy of integrating MARL across sectors is becoming more

apparent, research in MARL is rapidly expanding, giving rise to applications like it’s

vital role in autonomous vehicles learning to drive (Dinneweth et al. (2022); Zhou

et al. (2022)) to interests in using MARL to model, navigate and optimise financial

markets (Liu et al. (2022); Lussange et al. (2021)). The more specific field of fully-

cooperative MARL (focusing on common-payoff tasks where every agent in a team

receives the same reward) is also being recognised for its importance in areas such as

warehouse management (Krnjaic et al. (2022)) and has also achieved impressive success

in competitive gaming (Vinyals et al. (2019); Berner et al. (2019)).

It is important to advance research in cooperative MARL for multiple reasons, from

an AI perspective it is relevant in fostering cooperation across populations (Dafoe et al.

(2020)) as examples; cars should learn to cooperate and coordinate actions with other

cars, cyclists or humans, while in manufacturing lines robots and humans should work

together to increase efficiency and reduce accidents. However value in cooperative

MARL research could extend to other fields too providing insights in neuroscience,

game theory or social choice.

There is a significant challenge in the field of cooperative MARL which unless

addressed could inadvertently lead to a myopic understanding of it’s potential and

relevance. Namely, like many RL/MARL settings, cooperative MARL relies on envi-

ronments as artificial ‘training grounds’ for agents to learn on. Currently the number

of relevant environments adopted in cooperative MARL research remains extremely

limited, posing a restrictive barrier on research. A meta-analysis of the field (Gorsane

et al. (2022)) found that over 60% of the papers analysed and published in cooperative

RL in 2021 used only one of 2 environments. This is a problem as new algorithms may

be inadvertently environment-overfitting or producing unrealistic results with respect to

the ability of new algorithms to generalise across tasks. As such we note that the current

landscape of environments would greatly benefit from new contributions to allow the

testing of new, relevant, cooperative capabilities for agents to learn.

Part of the scarcity of adequate cooperative MARL environments also stems from

difficulty in actually defining ‘cooperative capabilities’ and how these may be targeted

and developed in an environment. Humans are generally good at identifying when

something is cooperative and when it is not, and a great part of our success as a species

is likely due to our ability to cooperate. However, defining ‘cooperation’ itself is

a more complex task. These challenges; of identifying cooperative capabilities and

implementing environments to test these serve as the catalyst for this project.
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1.2 The goal of the project

After having presented the importance of cooperative MARL and the role of environ-

ments and cooperative capabilities in this context we pose the following question:

How can we design, implement and test novel MARL environments to enable a deeper

understanding and exploration of new cooperative behaviours which remain

underexplored due to the constraints of limited existing environments?

This question can be broken down into three distinct goals and contributions:

• A comprehensive review of the most popular current MARL environments and

the cooperative behaviours they test as well as the identification and analysis of

which cooperative behaviours remain underexplored or challenging to investigate.

• The careful design and Python-based implementation of streamlined and computa-

tionally efficient MARL environments tailored to challenge and test the identified

cooperative behaviours.

• The integration of these environments within the EPyMARL framework (Pa-

poudakis et al. (2021)) followed by benchmarking and analysis of the perfor-

mance of existing MARL algorithms when applied to these new environments.

This will provide insights into the effectiveness of current algorithms in these

environments and allow researchers to expand upon the baselines set.

1.3 Structure

The remainder of the report has the following structure: Chapter 2 begins with a

presentation of the Multi-Agent RL framework that will be used, followed by a a review

of current popular cooperative MARL environments and the cooperative behaviours

they test. Chapter 3 will dive deeper into cooperation, presenting how one should

think of cooperation in the context of cooperative MARL research and identifying

capabilities that current environments struggle to test. Chapter 4 discusses the creation

of the environments, discussing environment dynamics as well as how it is hoped

they will contribute to testing new cooperative behaviours. Chapter 5 presents the

results of testing these environments on the EPyMARL framework and and analyses

the performance of the algorithms tested. Finally, Chapter 6 provides the conclusions to

the project and discusses possible directions for future work.



Chapter 2

Background and Related Work

2.1 Defining the Multi-Agent Reinforcement Learning

problem

We begin by formalising the Reinforcement Learning problem in a Multi-Agent setting

as a Partially Observable Stochastic Game (POSG) (Hansen et al. (2004)), a general-

isation of the traditional Markov Decision Process (MDP) used in single agent RL,

and follow the notation of (Christianos et al. (2020); Lowe et al. (2017); Foerster et al.

(2018)) in the definition. The game progresses in discrete timesteps and is defined as a

tuple (N ,S ,{Oi}i∈N ,{Ai}i∈N ,P ,{Ri}i∈N ) where N = {1,...,N} denotes the set of N

agents and S denotes the state space. A set of actions A1, ...,AN for each agent forms

the joint action space denoted as A = A1 × ...×AN and a set of observations O1, ...,ON

for each agent forms the joint observation space denoted O = O1 × ...×ON . Function

P : S ×A 7→ ∆(S ) is the state transition function which takes as input a current state

along with a joint action and returns a distribution over successor states. Finally Ri : S
× A × S 7→ R denotes the reward function giving each agent i’s individual reward ri.

Usually in single-agent Reinforcement Learning each agent would seek to maximise

it’s own discounted returns given by Ri = ΣT
t=0γtri

t by finding an optimal policy at each

state, with γ ∈ (0,1] representing the discount factor and T the total timesteps of an

episode. However, in a POSG, the reward of one agent’s policy frequently depends on

the policies of other agents and no longer on just it’s own policy, thus agents should

instead seek to find a policy that maximises their expected reward by also taking into

account the policies of other agents. We use the notation recommended by (Albrecht

(2021)) which is common place in game theory, where the problem statement can be

4



Chapter 2. Background and Related Work 5

described instead as each of the N agents looking to find policies π = (π1, ...,πN) such

that ∀i : πi ∈ argmax
πi

E[Ri|πi,π−i] where π−i = π\πi and denotes the policies of all other

N −1 agents not including agent i.

While it is the task of the learning algorithms (and indeed the objective in MARL as

a whole) to find an optimal set of policies π, it is the environment’s role in reinforcement

learning to provide all of the necessary information (contained in the tuple above) to

facilitate and encourage the algorithm’s learning, as such each environment presented

in this project will individually elaborate on each of the relevant entries. Environments

will thoroughly describe the state space S , the observation and action space for each

agent given by O and A respectively, any relevant transition functions P as well as

the reward structure R for each environment. The reward structure in this framework

will be presented primarily as POSG games since these are more general cases of

stochastic games and often are more intuitive to explain for each individual agent.

However, for the purpose of testing these environments as fully cooperative, as well as

the implementation of the EPyMARL framework used for evaluation (which requires

rewards to be summed amongst all agents and returned as a single value), environments

will also have a description of them as Decentralised Partially Observable Markov

Decision Processes (Dec-POMDP). Briefly, Dec-POMDP is a specialised case of POSG

where agents share the same reward function. This means that while in POSG agents

may have different objectives, leading to combinations of competition and cooperation,

in a Dec-POMDP there is a single reward function for all agents and thus agents are

aligned entirely on the same objective. Using a Dec-POMDP structure where all the

agents receive the same reward (the sum of all individual rewards) allows us to make

use of the many benefits the EPyMARL framework offers to test and train different

algorithms on the proposed environments.

2.2 Current Environments

It is valuable to explore and understand some of the most popular and widely used

cooperative multi-agent environments. Coming up with a good environment is a non-

trivial task and takes careful planning of what exactly the goal of an environment

should be as well as how it should (or could) be reached by agents. Analysing these

environments will provide valuable insights into what makes an environment valuable

for research, what makes them popular amongst researchers and how an environment’s

longevity and value may be preserved as new advancements are made. Similarly we
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will analyse the cooperative behaviours each environment aims to test and discuss in

the next section the gaps that could be tested.

StarCraft Multi-Agent Challenge (SMAC): 1 By far the most used and tested

co-operative environment in MARL (in terms of number of published papers (Gorsane

et al. (2022)) ), SMAC (Samvelyan et al. (2019)) is an environment based on the

real-time strategy (RTS) game StarCraft II focusing on micro-management and multi-

agent credit assignment challenges. The game consists of two teams of units, one

consisting of learned agents and the other of an automatic game AI, with the goal

of destroying eachother. SMAC offers customisation through a variety of ‘scenarios’

based on combinations of team sizes and units available, for example “10 Marines vs 11

Marines” or “3 Stalkers vs 5 Zealots”, each varying in difficulty and target cooperative

behaviours. A big part of the cooperative behaviours tested in SMAC focus on learning

coordination including developing formations through spatial coordination for better

defensive or offensive capabilities. Agents also learn cooperative capabilities through

various micro-management techniques like the temporal coordination required for agents

to ‘focus’ enemies (a term used for agents targeting a singular enemy simultaneously,

thus removing them quickly and reducing any future damage they would have dealt)

agents can then move on to the next target and defeat enemies like this one by one. This

also tests the temporal coordination of agents in terms of ‘overkill’, as agents would

ideally learn to not waste shots on targets that will be finished by other agents, when

they could use these to start an attack on a new enemy instead. Finally, enemy agents

can also change their policy at any point, this actively tests the ally agent’s abilities

to cooperatively adapt their strategy to counter any changes in strategy made by the

enemies. For example, ally agents may adapt by changing targets or reorganising their

formations. As we see, this final cooperative capability of adaptability or ‘flexibility’

can be expressed in different forms and is quite broad. It is generally applicable to many

MARL environments and rightly so, as understanding what is required of oneself at

different points in a process and being able to adapt for the greater good of the team is

undeniably a vital element of cooperation.

For completion we note two alternative versions of SMAC also present; SMAClite
2 offers a more efficient (nearly identical) re-implementation of the environment. More

recently SMACv2 was released (Ellis et al. (2022)) to tackle some previously un-

recognised limitations in the original environment relating to it not being sufficiently

1SMAC repository: https://github.com/oxwhirl/smac
2Code for SMAClite repository: https://github.com/uoe-agents/smaclite

https://github.com/oxwhirl/smac
https://github.com/uoe-agents/smaclite


Chapter 2. Background and Related Work 7

stochastic and showing how the building and designing of a robust environment is often

difficult where unpredictable vulnerabilities or exploitative policies are not entirely

uncommon.

Multi-agent Particle Environments (MPE): 3 A framework containing multiple

(often) simple but interesting and useful environments for testing cooperative capabili-

ties, specifically in contrast to SMACs complex and computer intensive environment,

MPE (Lowe et al. (2017); Mordatch and Abbeel (2017)) is significantly less compu-

tationally expensive (Papoudakis et al. (2021)). MPE also focuses on very different

cooperative behaviours, with various environments focusing on communication, for

example “Speaker Listener” contains an agent which must navigate as close as possible

to a landmark (which is unknown to that agent) and should be ‘guided’ by the speaker

(an agent who knows the location of the landmark) and has a discrete action space

of things they can communicate to the first agent. “Tag” is another example of an

environment in MPE, a ‘predator-prey’ environment where the prey agents want to

evade the predator agents trying to catch them. Here the prey may learn to make use

of spatial coordination as a cooperative capability and use their actions to constantly

misdirect the predators or spread out to avoid being captured. The predators on the

other hand may coordinate their actions to block off any escape routes for the prey

through careful coordination or the use of ‘obstacles’ to also block off exits. Due to the

simplicity in many of the environments, MPE offers good options to test cooperative

capabilities in near isolation, like the communication or spatial coordination described

above.

Level-Based Foraging (LBF): 4 A mixed cooperative-competitive game based in a

grid-world, LBF (Christianos et al. (2020); Papoudakis et al. (2021)) also focuses on

coordination however agents (each with a randomised associated level) must now collect

food (also with associated levels) that is scattered around the environment. Successful

food collection depends on the sum of the agents’ levels matching or exceeding the

food’s level, with rewards based on the food’s level and the contribution of each agent,

any agent may also collect food individually as long as their level exceeds that of the

food. Part of the complexity of this environment lies in it’s mixed cooperative nature,

where agents must not only learn when to cooperate with other agents and when to act

alone but also, if they are to cooperate, which agent to cooperate with. Presenting a

similar equilibrium selection challenge as the popular game theory game ‘Stag Hunt’

3PettingZoo repository: https://github.com/Farama-Foundation/PettingZoo/
4LBF repository: https://github.com/uoe-agents/lb-foraging/tree/master

https://github.com/Farama-Foundation/PettingZoo/
https://github.com/uoe-agents/lb-foraging/tree/master
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(Skyrms (2001)), agents should ambitiously target high level food in coordination,

however, from the perspective of each individual agent this presents an opportunity cost,

as another agent may never arrive and the agent would prefer to at least collect the food

it can collect individually. We can identify in this game the cooperative capabilities

of cooperative decision making, strategic partner selection as well as the difficult task

of balancing cooperation and competition. It should be noted that this environment

also offers variations allowing the game to be played fully cooperatively through agents

being unable to collect food individually, as well as a mode where rewards are evenly

distributed, thus more closely aligning the game to a Dec-POMDP.

Robotic-Warehouse (RWARE): 5 The most applicable environment for real-world

scenarios out of the ones discussed, RWARE (Papoudakis et al. (2021); Christianos et al.

(2020)) is an environment based on a standard warehouse where robots must collect and

deliver shelves (’packages’) to a determined destination and then return the delivered

shelf to an empty location. Agents here need to cooperate to avoid potential deadlocks

in spaces where only one agent can pass and thus require extensive spatial coordination,

this is tested thanks to the complex and tight layouts of the environment itself which

allows little room for error and requires complex joint path planning. Agents are also

tested on their ability to dynamically prioritize collectively and decide which shelves

to go for. As an example; an agent between two shelves (A, B) could choose to target

a further away shelf (A) if going for the closer shelf (B) would mean ‘taking it’ from

another agent who’s intention was to collect shelf (B) and then forcing that other agent

to travel even further (to collect shelf (A)) than they otherwise would have. As with

other environments, sparsity of the rewards (as agents are only positively rewarded

when a requested shelf is delivered) makes this environment particularly challenging

for agents. As to obtain any reward they must first navigate the environment and form

full, often complex sequences of actions. Similar to LBF, RWARE also offers rewards

to be configurable between individual or cooperative rewards.

Overcooked: 6 an environment based on the popular multiplayer cooking game,

Overcooked (Carroll et al. (2019); Wu et al. (2021)) has multiple agents prepare various

recipes using a combination of tools and ingredients and then deliver them to a specific

point. Recipes are semi-sequential in that the order of using tools on ingredients is

important (for example, tomatoes should be chopped and then placed on a plate, not

placed on a plate and then chopped), but the order of the placing of ingredients on a

5RWARE repository: https://github.com/semitable/robotic-warehouse/tree/master
6Overcooked repository: https://github.com/DavidRother/cooking_zoo

https://github.com/semitable/robotic-warehouse/tree/master
https://github.com/DavidRother/cooking_zoo
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plate does not matter (chopped lettuce can be placed before or after chopped tomatoes

when making a salad). Three cooperative capabilities are identified in the literature and

referred to as ‘Divide and Conquer’, ‘Cooperation’ and ‘Spatio-Temporal movement’.

Divide and Conquer refers to the partitioning of sub-tasks between agents (for example

to more efficiently use their time, each agent may cut different ingredients) and can

easily be tested by visualising the environment to see if agents learn such behaviours.

Cooperation here refers to agents working efficiently on the same subtask when required

(for example if only one agent has access to lettuces and the other to the knifes they

must work together to cut the lettuce in the middle counter). Finally, Spatial-Temporal

movement here refers to agents avoiding blocking eachother in bottleneck points or

generally obstructing the other’s path (in a similar way to how this is a problem in

RWARE). Overcooked also has a strong focus on capturing beliefs and intentions of

other agents, agents should learn to recognise when another agent is approaching a task

and recognise the intention of that agent, thus directing their attention to a different

task.

Melting Pot 2.0: 7 Melting Pot 2.0 (Agapiou et al. (2023)) is a suite of environments

used for testing generalisation to novel social situations that require a mixture of

‘social behaviours’. Not all environments in this test suite are strictly cooperative,

with many environments being competitive or specifically built where agents can be

deceitful, stubborn or malicious, however all environments share the common goal that a

successful solution to the environment must require some cooperation and a combination

of ‘social behaviours’. For instance, ‘Commons Harvest: Open’ is an environment that

looks to promote ‘Resource Sharing’ and ‘Teaching and Sanctioning’ as two of the

identified behaviours, but is intrinsically ‘semi-cooperative / semi-competitive’. In this

environment agents are rewarded for collecting fruit from trees, a common-pool resource

which any agent can collect. Trees periodically regenerate fruit based proportionally on

how much fruit remains on the tree, thus if a tree is depleted of fruit it will no longer

generate further fruit. The solution here appears simple; agents should collect fruit

from trees without depleting any one tree and would thus have an endless supply. In

practice this environment has so far not been solved, instead leading to a ‘tragedy of the

commons’ scenario, where agents rapidly collect as much fruit as possible in fear that if

they don’t others will take the fruit instead, thus collectively agents end up depleting

the environment entirely. The variety of simple environments available in MeltingPot

makes it a great resource for MARL research beyond pure cooperative games.

7Melting Pot 2.0 repository:https://github.com/deepmind/meltingpot

https://github.com/deepmind/meltingpot
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Figure 2.1: Renderings of the most popular MARL environments in the same order as

listed above

It should be noted this list of environments is not exhaustive, indeed other envi-

ronments such as Hanabi Bard et al. (2020) or the Google Research Football Kurach

et al. (2020) environment and more exist and are also used in research, however many

of these environments are limited in customisation (like Hanabi) or have already been

‘solved’ by previous research and thus the requirements for new environments remains.

As the ‘playground’ and foundation for where future research on cooperative MARL

algorithms should be conducted, the number of interesting and available environments

must consistently increase to promote further innovation and growth in the field and

minimise the risk of stagnation.

In analysing these environments the need for a structured framework of consistent

naming and definitions of cooperative capabilities became apparent. Various environ-

ments have at least some overlap in the cooperative capabilities tested such as with

Overcooked simply labelling a tested capability ‘Cooperation’ which as we’ve discussed

could take various different forms. A more apt name could be ‘Collaborative Tasking’

refering to the actual concept of performing a specific task that requires collaboration

between agents, and thus differentiating the behaviour from that of other cooperative

capabilities. This is a topic that will be further discussed in chapter 3 but points to a

potential direction for future work.



Chapter 3

Cooperative Capabilities

3.1 Identifying Cooperation

As we have discussed, defining cooperative capabilities is not an easy task and different

literature takes diverse approaches to how to categorise cooperative capabilities. Perhaps

the clearest partition comes from (Dafoe et al. (2020)) where it is argued that cooperation

can be split into 4 primary categories: Understanding, Communication, Commitment

and Institutions.

Understanding refers to the ability of agents to actually comprehend the environment

around them, the ability to asses the value of certain actions and ideally be able to

anticipate actions of other agents in the environment while forming beliefs of the envi-

ronment. Indeed deep understanding of the environment is vital across all environments

in RL and can be argued is the motivating factor in single-agent RL, where the agent’s

sole task is to understand the environment around it in isolation. In a multi-agent setting,

understanding should also encapsulate an idea of ‘beliefs’ and preferences of other

agents. The idea that each agent should have it’s own beliefs, preferences and intentions

is referred to in some literature as identity design (Conitzer (2019)) but for the purpose

of cooperative MARL specifically it’s important to understand that agents should be

able to learn and deduce implicit information (beliefs, preferences and intentions) which

we can think of as being attached to other agents, simply by observing their moves.

Agents who can successfully do this and learn about the rest of the environment are

adequately developing their understanding.

The next category is ‘Communication’, unlike understanding which may require

implicit observation of the environment and other agents, communication is the explicit

sharing of information between agents, often through very simple signals (due to

11
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computational limitations) as is the case with “Speaker Listener”. Communication

under mixed-motive games can be problematic as agents also have to consider the

possibility of deception or agents looking to misinform other agents, however in fully

cooperative games communication can be an extremely powerful tool to guarantee the

success of agents and promote cooperation.

Commitment is perhaps the category most tied to complex social behaviours as it is

less tangible than the understanding of an environment or the sharing of information.

Various games in game theory (such as the Prisoner’s Dilemma) can be easily solved

if agents learn to successfully commit to an action. Commitment is also powerful

inversely (Deng and Conitzer (2017)), where agents instead commit to not playing

certain strategies which might be detrimental to the group, thus avoiding a socially bad

Nash Equilibrium (Nash Jr (1950)) and allowing agents to instead search for a new, more

optimal equilibrium. Many of the environments above also depend on commitment

of multiple agents, for example SMAC’s ‘focus fire’ behaviour depends on all agents

committing to attacking the same target simultaneously, if any agent defects from this

strategy the result is a suboptimal performance by the agents.

Institutions is derived mostly from economics and political theory, referring to the

a system that implicitly determines operational guidelines for agents through rules

or norms. This is a particularly difficult cooperative category to analyse as it risks

the form of negative coalitions or unfairness when a select group marginalise other

agents. However institutions can play a crucial role in promoting cooperative dynamics,

aligning incentives and providing a foundational structure for complex inter-agent

interactions. Institutions might for instance appear in trading environments where

agents who overprice their products may be ignored by other agents as an implicit idea

of fairness in value traded arises.

3.2 Target Cooperative Capabilities

While these 4 categories form a strong foundation for how we can think of coopera-

tive capabilities, often more depth and targeted analysis is required to really identify

cooperative behaviours. Melting Pot (Agapiou et al. (2023)) besides providing the suite

of environments previously discussed also provides a more comprehensive list of 14

different cooperative capabilities, including: ‘Flexibility’, ‘Reciprocity’, ‘Resource

Sharing’ or ‘Dynamic Coalition Forming’ amongst others. All of these can infact be

grouped in the 4 categories proposed by Dafoe et al. (2020), ‘Flexibility’ for example,
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can be thought of as requiring a strong understanding of the environment and what

is required of the agent in different situations (Overcooked is a prime example of an

environment testing flexibility by requiring agents to adapt frequently to the task they

are doing). Alternatively, ‘Dynamic Coalition Forming’ is precisely the sort of coopera-

tive behaviour one would expect from the formation of institutions. It is very rare for

an environment to only be testing a single cooperative capability, most environments

test combinations of these and even the combinations might themselves be unique

and encourage interesting dynamics between agents. Based on the examples given in

the MeltingPot list and cooperative capabilities absent from it, as well as cooperative

capabilities identified previously in current environments, we briefly identify the key

cooperative capabilities that we want to test and build environments around:

The first cooperative capability adheres to a form of ’trust’ (a subcategory of

commitment) as well as an ’understanding of limitations’ of other agents which we can

think of as the cooperative capability of empathy and clearly falls under understanding.

This environment, although simple, requires the precise coordination of actions between

agents and will require temporal coordination. For agents to fully maximise on their

returns they will need to take into consideration how their actions will impact the

locations of other agents and, as a consequence, the actions those agents can take

at the next timestep. Although it will be explored in a fully cooperative setting, in

a mixed-motive game this environment has further interesting dynamics that will be

discussed as it’s presented.

The second environment targets a new combination of cooperative capabilities,

including ‘adaptive risk assesments and distributions’ where agents need to determine

which sections of the environment or areas of the grid are at higher risk and distribute

themselves accordingly. In particular some agents may have to change their strategies

to allow other agents to improve their positioning for the general benefit of the team.

We identify the idea of ‘territory and ownership’ as an important cooperative

capability which has been overlooked in popular MARL environments. In the context

of this environment specifically the idea of the performance of agents depends on third

party ‘property’ which can be interacted with by other agents. This will be the key

cooperative capability tested in the third environment along with many of the traits also

explored in the second environment, due to both environments sharing many properties.

Each of the cooperative capabilities for each environment will be explained in more

depth and with examples as we present each environment in the following chapter.



Chapter 4

Co-Operative Environments

This chapter focuses on the creation and development of three proposed environments.

Environments will be presented by an explanation of the basic premise of the game,

along with the action and observation spaces of each agent followed by the reward

structure. Finally we will discuss interesting dynamics of each environment and how

we hope the identified novel cooperative capabilities are learned and tested. We begin

with an analysis of key general environment traits identified in the literature which are

valuable for environment design and can provide motivation behind how we implement

our environments:

• An environment need not be overly complex in its action space or in possible

scenarios to be interesting or encourage interesting cooperative behaviours. LBF

is a clear example of an environment that appears deceptively simple in it’s

premise but is effective at promoting interesting cooperative behaviours.

• Environments should be intrinsically easy to understand from a tactical perspec-

tive, it should at least be clear how a possible cooperative solution might come

about, even if better solutions also exist. A perfect example of this is ‘Tag’ from

MPE, the premise of the game is clear as most people have some reference to the

game or have played it themselves and yet multiple possible cooperative solutions

exist to trap the prey.

• Customisation is key for longevity. Most environments contain at least a selection

of scenarios to test algorithms on, with further customisation on other aspects like

‘RWARE’s’ ability to modify the number of requested shelves. Customisation

allows researchers to experiment with different configurations to really understand

parts of cooperation algorithms may be failing or excelling at.

14



Chapter 4. Co-Operative Environments 15

One of the design constants that is present in all three environments is the option

for agents to have a full observation of the environment or a simpler and more efficient

ego-centric observation space. Experiments ran in this project were all done using this

ego-centric observation space.

4.1 Collision Dynamics

All three environments require dealing with collision dynamics between agents, and

they were managed in a very similar way. Collision dynamics refers to what happens

when two or more agents would come into contact in the same cell or take actions that

would lead to conflicts in the environment. Besides an agent trying to move out of

bounds (which would simply leave an agent in place and count the agent’s action as

invalid), three main collision problems were identified and tackled:

• Two or more agents trying to move into the same cell: This was implemented

such that any one of the agents attempting to make the move would be randomly

selected and complete the move, the other agents would then remain in place.

• Agents trying to swap places: this occurs when two adjacent agents are trying

to move to eachother’s cells, for instance if agent A is at (1,1) and tries to move

to (1,2) while agent B is at (1,2) and tries to move to (1,1). These actions are

considered invalid and both agents must remain in their current position.

• The problem of ‘cascading actions’: a consequence of the above, agent’s move-

ments are fully interdependent as the validity of one agent’s action may be

contingent upon the successful execution of another agent’s action. For instance,

if agent A intends to move agent B’s position, this move is valid only if B can

vacate its current spot. However, B’s ability to move might, in turn, depend on

another agent, say C. If C obstructs B, both A and B’s actions are rendered invalid

due to the cascading effect of the dependency.

4.2 Dance Crew Environment:

The first environment is the simplest of the three and is proposed as a simple environment

for researchers to explore how agents consider the impacts of their actions. The

environment is called ‘Dance Crew’ and consists of a number of agents (set to 5 by
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default) that must learn a dance routine amongst themselves that will be interesting for

the crowd and increase their rewards. Agents have 4 standard actions {UP, DOWN,

LEFT, RIGHT} whereby the agents move through the grid in these cardinal directions,

and another symbolic ‘FLASHY’ action which maintains the agent in the same position

but puts a spotlight on them, this action, if executed correctly can allow all agents to

receive a much greater reward. For Dance Crew with 5 agents, the observation space is

a single ego-centric vector of length 19 where the positions of other agents are relative

to the specific agent observing at that point. The first two entries correspond to the

observing agent’s (x,y) coordinates, the third entry corresponds to the same agent’s

action at the previous timestep. The following 12 entries can be thought of as ‘sets’ of

three comprising of the relative (x,y) coordinates followed by the previous action for

each the remaining agents. Finally, the last 4 entries in the observation vector are the

North, South, East and West distances to the edge of the grid.

Figure 4.1: A succesfull timestep in Dance Crew; all back 4 agents moving forward and

the frontmost agent performing a flashy Action.

The reward structure is explained below, for a Partially Observable Stochastic Game

(POSG) setup:

• If two or more agents perform a ‘flashy’ action simultaneously, these agents get a

reward of -2 as they are essentially competing for the spotlight at the expense of

the group, all other agents get a reward of -1 regardless of their action.

• If agents are uncoordinated and two or more standard actions are performed

between the 5 agents, each agent gets a reward of -1.

• If agents all perform the same standard action in unison each agent gets a reward

of +1.



Chapter 4. Co-Operative Environments 17

• If one agent performs a ‘flashy’ action, and all other agents perform the same

standard action in unison, then the agent performing the flashy action will get a

reward of +5, and the other agents will each get a reward of +2.

• To encourage diversity in the actions of agents (and promote interesting dynamics)

agents are penalised for repeating the same action 3 or more consecutive timesteps.

Agents doing this will receive a reward of -1 until the action is no longer repeated

at which point the counter resets.

For a Dec-POMDP setup (which will be required to use EPyMARL) the rewards

are simply given by the sum of what otherwise would have been the individual rewards.

Thus, the minimum total reward is -10 (all agents performing a flashy action), -5

constitutes all agents performing different standard actions, 5 constitutes all agents

performing the same standard action and 13 presents the maximum possible returns in a

single timestep (1 flashy action and 4 synchronised standard actions).

To illustrate the target cooperative behavior of ‘sympathy’ towards other agents’

limitations, consider the scenario with five agents where two agents are positioned on the

grid’s leftmost side. If any other agent chooses a leftward action, it disrupts coordination,

irrespective of other agents’ choices. This disruption occurs because at most one of the

two agents can execute a flashy action and hope for coordination; the other agent is left

with either an uncoordinated action (including also performing a flashy action) or an

invalid leftward move. Therefore, agents should recognize these limitations in other

agents and avoid such actions during that timestep. This principle can expand, with

agents learning to avoid as much as possible actions that may compromise coordination

or trap peers in restrictive positions in the future, like being trapped by other agents

or near the grid’s edge. The game also inherently embodies trust and commitment as

agents must believe other agents will act in coordination and adequately, as well as

granting opportunities for agents to perform flashy moves.

4.3 Active TD (ATD)

The environments that follow are both rooted in the iconic ‘Tower Defense’ (TD)

game genre, each adapted to emphasize and promote significantly different cooperative

dynamics between agents. While both aim for similar outcomes, they uniquely challenge

agents due to their inherent differences in dynamics and the cooperative capabilities

they evaluate. It is hoped that the widespread recognition of the TD genre will help
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these environments be instantly understandable and accessible to researchers, promoting

adoption and facilitating more intuitive analysis.

To clarify briefly, traditional TD games consist of preventing enemies which spawn

at an initial position from reaching the end of their path by consistently zapping them

and lowering their Hit Points (HP) until they despawn. In these environments the

enemies are ‘ghosts’ and it is the goal of the agents to zap and despawn them before

they reach the end.

Further expanding on this, in Active TD, these agents take on the role of dynamic

towers. As well as zapping ghosts, agents can traverse the gridworld, though are

restricted by the terrain of the environment, with agents being restricted to ‘grass’ cells

and unable to enter cells with obstacles or cells marking the path of the ghosts.

Figure 4.2: Render of the ’standard’ TD map with 3 agents

Agents in the environment are homogeneous, each possessing an identical action

space: of {NOOP, UP, DOWN, LEFT, RIGHT} as well as the same cardinal movements

preceded by a ‘ZAP’ action (e.g., a ZAP-NOOP action can be executed and results in

zapping surrounding ghosts followed by staying in the same position). This zapping

action targets ghosts in all eight neighbouring cells reducing each ghost’s HP by one.

The deliberate choice to allow agents to zap and move in the same step introduces

potential strategies like tailing ghosts along the path, however, this is often suboptimal

and agents will require greater cooperation to maximise returns.

The observation space is ego-centric for each observing agent being considered. In

order for the observation space to remain consistent throughout an episode a maximum

possible number of ghosts present in the environment at any one timestep had to be

established (with zero-filled entries when a ghost was absent). Hence, the observation

space’s dimensions depend on both agent count and the maximum number of ghosts
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allowed in the environment at any one time. The first three entries of an observation

capture the agent’s grid position and respective ‘zap cooldown timer’ while each two

subsequent entries detail the relative (x,y) coordinates of the other agents. Following

this, each ghost is then represented by its own relative (x,y) coordinates to the agent

and its remaining HP. The final four entries specify the nearest obstacle or path cell’s

distance in the four cardinal directions: North, South, East, and West. As an example,

an environment with 5 agents and a max of 10 ghosts would have an observation space

of dimension 37 (3+(5×2)+(10×3)+4 = 37).

In the standard reward structure, agents receive +1 for each successful ghost zap,

with the exception that, when multiple agents zap a low-health ghost causing it to

despawn, rewards are instead split (e.g., three agents zapping a 2 HP ghost each receive

a reward of 2/3). This is done to discourage ‘overkill’ (excessive zapping of ghosts)

and deters potential worrying behaviors like collectively targeting low HP ghosts to

artificially inflate rewards. An alternative sparse reward system exists where only the

last agent to zap and remove a ghost receives a reward equivalent to the ghost’s full

initial HP (though, again, this is split amongst agents if multiple agents simultaneously

despawn a ghost, like in the overkill cases above). In both standard and sparse reward

structures all agents also receive a configurable penalty (default -15) when a ghost

reaches the path’s end. We note that for the Dec-POMDP case (and indeed for the

EPyMARL implementation) agents simply share the total sum of what would otherwise

have been the individual rewards at each timestep.

4.3.1 Customising the environment:

One key objective for these Tower Defense environments was to ensure adaptability and

customization for future researchers, starting with map configuration. With strategic

placement of obstacles and the path of the ghosts introducing diverse challenges and

making the environment a versatile platform for assessing a range of cooperative

capabilities based on its configuration. This versatility, is hoped, will help add long

term value to the environments and provide multiple possible configurations used for

benchmarking.

Customisation was made to expand to much more than just map configuration

though and so in both TD environments researchers are able to customize:

• Full map configuration: Given a string input of G (Grass), P (Path), O (Obstacle)

, A (Agent) and (S / E) for (Star / End ) of path. Researchers can test maps of any
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dimension and configuration (as long as the ghost path is valid).

• Ghost HP : Spawn HP of ghosts, increasing this significantly increases complexity

of environment as agents may have to target the same ghost multiple times.

• HP threshold: A threshold on the sum total of HP among all ghosts (ghosts will

only spawn when total HP is below the threshold).

• Max Ghosts: Maximum number of ghosts on the path at any one time. This

is required to maintain constant length observation spaces, but also provides

interesting interactions with the HP threshold configuration. Agents may learn

for example to keep ghosts HP close to 1 until the end so ghosts do not despawn

and allow a new full hp ghost to spawn, potentially leading to interesting “wave

management” dynamics.

• Spawn Rate: Value in range (0,1] determining the probability of a new ghost

spawning if it is possible.

• Zap Timeout: Cooldown for the tower’s (in this case directly the agent’s) zap

action.

• Fully Cooperative: True / False, determines whether rewards are shared between

agents (for a fully cooperative setting) or each agent gets it’s own reward (mixed

motive setting).

• Sparse Rewards: True/False, rewards as explained above.

• Penalty: The penalty given to agents when a ghost reaches the end of the path

(default 15).

We note that the path for the ghosts to follow is automatically computed given

a custom input string for the map by using a Breadth-First Search algorithm Bundy

and Wallen (1984) and then stored for future ghosts. Thus, researchers do not have to

explicitly list out all of the path in order.

Furthermore, the environments come with 4 more premade maps with varying

levels of difficulty and posing different challenges for agents. Maps like ‘Split’ and

‘Clover’ separate which part of the map are accessible to different agents, while ‘Circle’

theoretically provides an easier map due to the high density of path cells. Meanwhile

‘Maze’ offers a slightly different challenge due to navigating a sort of maze with only
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partial observability and will also be tested to show how customisation can change the

dynamics of environments significantly.

Figure 4.3: Predefined Map Configurations: ‘Split’, ‘Clover’, ‘Circle’, ‘Maze’

4.3.2 Cooperative capabilities of Active TD (ATD)

To understand the cooperative capabilities tested in this environment, consider several

illustrative scenarios. Like Overcooked and RWARE, our environment demands rigor-

ous spatial coordination, especially at ‘bottleneck points’, however, an additional layer

of complexity emerges from the need for cooldown management and action timing,

given the cooldown on the zap ability. For instance, an agent with a zap on cooldown

should prioritize the mobility of fellow agents with available zaps rather than make

the agent wait an additional timestep with the zap off cooldown. This also highlights

the need for agents to balance area coverage, where implicit communication becomes

crucial, as agents should deduce preferences based on their counterparts’ actions (for

example if an agent is moving towards a point where there are limited ghosts, it would

be unwise for another agent to do the same). A possible emergent behavior might see

agents partitioning the map into zones for each agent, but then if a ghost approaches

the path’s end, the nearest agent might have to trail to despawn it, leaving its zone

unattended. Such scenarios underscore the significance of cooperative adaptability: it

would be a testament to the agents’ collaborative intelligence if a nearby agent adjusts its

policy to also cover some of the high ‘path density’ vacated cells until the tailing agent

returns. While we’ve outlined potential strategies, the environment’s configurability

means more cooperative capabilities could arise and would be interesting to observe in

the evaluation.
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4.3.3 Considerations when building the environment

We note two important attributes of the terrain of the environment and their conse-

quences. These are referred to as ‘bottleneck points’ and ‘path density’. Bottleneck

points refers to an attribute which is common amongst other environments like Over-

cooked and RWARE and refers to cells which if blocked (by an agent or obstacle)

prohibit movement to the other side of that blockage. These can be clearly seen near the

centre of the default terrain where there are multiple such bottleneck points. ‘Path den-

sity’ on the other hand is unique to these TD environments and refers to how many path

cells an agent could simultaneously target from a single grass cell, for example multiple

cells near corners of the path have a higher path density (of 5) than cells on straight

parts of the path (of 3). Path density is particularly important to consider in terms of

how an environment may be solved as well as for the difficulty of the environment, as a

higher path density generally will lead to an easier environment.

Significant consideration must also be placed on the reward function of any environ-

ment, as it is solely responsible for distinguish which sort of behaviours we would like

to promote in agents. We note that reward structure is more complicated than merely

how explicit positive rewards or penalties are given, as rewards can also be determined

by the length of an episode (longer episodes allow for greater opportunities for rewards).

It was originally contemplated to have episodes terminate whenever a ghost reached

the end of the path (this would have had the benefits of speeding up training time

significantly as well as simplifying evaluation). It was considered, however, that

interesting dynamics may arise from allowing agents some leeway in purposefully

letting some ghosts reach the end in exchange for maintaining a strong territorial

position or building a stronger territorial position for the future. This sort of forward

planning should also be a valuable capability tested which may result in interesting

agent dynamics.

Within the reward function it was considered whether to make the negative reward

(penalty) for a ghost reaching the end of the path simply its remaining HP. This would be

intuitive for performance of the agents as then a positive overall return would symbolise

that agents were able to reduce the total HP of ghosts more than any leftover HP of

ghosts who made it to the end. However, the problem with this reward function is that it

would not be placing enough emphasis on stopping ghosts from reaching the end, and

instead would encourage simply ‘farming zaps’ (being at high path density positions

where agents could zap the most ghosts regularly). We hypothesise that agents would
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learn to merely abuse being close to the start of the path or at strategic points as the

potential benefit from simply landing more zaps would outweigh the cost of letting a

lose ghost (with a low HP) reach the end. And so the penalty for ghosts reaching the

end was set to a significantly larger constant value (15 by default) and should always be

configured to be higher than the initial ghost HP.

This is also important for two reasons:

It encourages the cooperative capability of zone management and trust. If agents

learn how to react to the environment and a good strategy to destroy ghosts then the

amount of ghosts that reach the final part of the path should be minimal. A hypothetical

agent that learns to watch over over the final part of the path may zap fewer ghosts

in an episode than other agents but the presence/abscence of the zaps on a ghost that

agent offers has a higher value for the collective than an many individual zaps which

never manage to despawn a ghost. Ofcourse, in a cooperative environment both are

vital and agents who can learn the importance of balance here are exactly what these

environments aim to foster but it is useful from an observational point to perceive

differences in tactics and the value each tactic brings to the collective. Trust also plays

a significant role here, as agents should trust that peers will target ghosts at different

points throughout the ghosts path, discouraging inefficient ’tail’ tactics from agents.

The above is interesting to consider in map design more generally. Strategizing

the placement of these interesting zones, like the vital role of an agent near the end of

the path to despawn escaping ghosts at the expense of not necessarily being in a high

density path area, can itself change the emphasis of which cooperative capabilities are

most relevant in an environment.

4.4 Passive TD (PTD)

In this environment, the agents are not themselves the towers but instead possess

the ability to strategically place or sell towers in the environment. Towers placed

deterministically zap nearby ghosts in all adjacent cells and effectively change the

terrain as they obstruct agent movement within the cell where the tower is placed, with

agents either having to navigate around towers or sell them to get through.

This environment has some additional available configurations beyond the ones

specified for the previous environment:

• Place Cooldown Timer: The number of timesteps between an agent placing a

tower and being able to place another.
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• Max towers: Determines the maximum possible amount of towers simultaneoulsy

active belonging to a single agent.

• Zap Cooldown: How often towers will automatically zap nearby cells.

• HP Gain rate: Due to the nature of the environment, agents are much more limited

during the beginning of an episode (when there are none or few towers placed)

but also much stronger as they fill the environment with their towers. As such HP

Gain determines how regularly the ghost’s HP increases (ex: every 5 timesteps) to

maintain the environment initially solvable but also challenging at later timesteps.

This value is by default the same as ‘place cooldown timer’.

• HP Gain number: The amount by which HP of ghost’s increases (ex: HP +2)

every selected number of timesteps. This value is by default the number of agents

in the environment (the combination of the above two defaults guarantees the

environment is always somewhat challenging).

In order to facilitate the selection of cells for ghosts to place or sell towers, agents

now have a ‘direction’ they face and have a modified action space:{ NOOP, FORWARD,

TURN LEFT, TURN RIGHT, PLACE, SELL, LEFT FORWARD, RIGHT FORWARD}.

With the last two actions symbolising turning to the Left/Right respectively and then

moving forward in that direction all within one timestep. The observation space for

each agent here focuses on an ego-centric view where the first 3 rows are the (x,y)

coordinates followed by the ‘place cooldown timer’ for that agent. The subsequent

entries (determined by the max towers argument) are the relative (x,y) coordinates of

all the towers placed by that agent. Following entries similarly constitute of the (x,y)

coordinates of fellow agents followed by their respective towers (with 0s if none are

placed). Finally, the last four entries dictate the distance to the closest obstacle, path cell

or tower in each of the 4 cardinal directions (North, South, East, West). Finally, rewards

are accumulated across all towers ‘belonging’ to an agent, with the agent receiving

the total sum of all succesfull ‘zaps’ on ghosts from it’s towers at any single timestep.

Sparse rewards only reward the full ghost’s HP (which progressively increases alongside

the timesteps) on succesful despawning of a ghost. In both cases again there is a penalty

if any ghosts reach the end of the path. Similar to the other two environments, in a

Dec-POMDP version rewards are instead summed and shared between all agents.
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Figure 4.4: Rendering of Passive TD on the standard map with 3 agents taking random

actions

4.4.1 The ‘SELL’ action

It is worth further explaining the ‘SELL’ action for this environment; any agent is

allowed to sell any tower, irrespective of if the tower is one they have placed or another

agent has placed, however selling a tower will only free up that tower space for the

agent it originally belonged to. To illustrate, if all agents have maxed out their tower

placements and one agent decides to sell another agent’s tower, only the latter (the agent

who’s tower was sold) can place a new tower, not the former (the agent who sold the

tower). Selling a tower, however, does reduce the remaining cooldown of the selling

agent’s ‘PLACE’ action.

This sell mechanic introduces several implications for cooperation. Since the

cooldown reduction of selling a tower doesn’t fully compensate for the full cooldown of

its placement, agents should not regularly sell towers or they will find they do not have

enough towers to deal with high HP ghosts in later waves. However, certain scenarios

could justify the selling of a tower; replacing a poorly positioned tower into a high

path/cell density area, using the reduced cooldown as a last-resort strategy against a

ghost near the end of the path, or clearing a tower that obstructs pivotal paths could all

be tactful uses of ‘SELL’. Agents should also be wary of encircling themselves with

towers or obstacles, and should internalize this spatial awareness during navigation.

Furthermore, in mixed-motive settings where rewards aren’t uniformly split, the

sell mechanic adds another layer of depth. Agents might be incentivized to sell an-

other’s towers to hasten their own ’PLACE’ cooldowns, aiming for an early advantage

by placing as many towers as possible. However, this tactic is very individualistic

and shortsighted as effective handling of stronger ghost waves requires collective co-
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operation, emphasizing the importance of a collaborative approach over individual

gain.

The ability to sell and place towers introduces a new unique cooperative capability

to be tested which is not present in any of the popular MARL environments through

the idea of ‘property and ownership’ which brings in the complexities of resource

management and territoriality. An agent’s decision to sell a tower, especially one

that doesn’t belong to it, can be seen as a breach of another agent’s territory or trust.

Which adds an interesting layer of social dynamics, where agents must learn not just to

cooperate in terms of spatial and defensive strategies but also in terms of respecting the

property and territory of others.

In certain situations, one agent selling another agent’s tower can be advantageous

for both. For instance, imagine an agent has utilized all its tower slots, including one

placed earlier in the game, perhaps to capitalize on an available cooldown. As the game

progresses, the agent might find a more strategic location for that initial tower on the

opposite side of the map. Could a secondary agent discern this strategic need and sell

the agent’s initial tower? The objective wouldn’t be to reduce its own cooldown but

rather to free up a tower slot for the first agent, optimizing overall strategy.

Additionally, the ability to place towers brings in a strategic depth where agents

must predict and understand the long-term implications of their placements. Agents

aren’t just reacting to the immediate threat of ghosts but should also be collectively

planning for future waves, predicting the behavior of other agents, and understanding the

evolving terrain of the environment. Agents may need to forgo short-term advantages,

like placing a tower near the start for immediate rewards, in favor of long-term strategic

placements that benefit all agents in subsequent rounds.
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Evaluation

This chapter follows the guidelines set out by Gorsane et al. (2022) and follows a

standard performance evaluation for Cooperative MARL. This approach ensures ease

of comparison and potential enhancements by other researchers to the baselines pre-

sented here. Each algorithm was rigorously evaluated using five distinct seeds for

each algorithm/environment combination, with the results reflecting the ‘average test

mean return’ across these seeds. The results incorporate the standard deviation from all

five runs as an indicator of uncertainty with this measure being particularly important

(and recommended for future studies) given that environments like ATD and PTD

often exhibit significant variations in returns. This variability arises from the inherent

unpredictability of spawn rates where, for instance, a rate of 0.5 doesn’t guarantee

a consistent number of ghost spawns across episodes and thus can significantly vary

potential returns.

The values of key configuration arguments is specified for each of the TD experi-

ments in Table 5.1, this is done to allow researchers to replicate the obtained results and

to act as the baseline for future research using these environments. It is worth noting

due to the computational and time limitations experiments in this section are not fine

tuned and results may improve with a more carefully selected set of parameters. The

algorithms are each tested with the predetermined base hyperparameters (learning rate,

tau, hidden layers, etc) for each algorithm given in EPyMARL. The purpose of this

section is not to obtain optimal results across all algorithms but rather to analyse which

algorithms appear to be performing well in which environments and hypothesise as to

interesting cooperative capabilities present.

Algorithms will undergo both quantitative and qualitative assessments. Quantita-

tively, we’ll measure total mean returns over the duration of timesteps, contrasting these

27
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results against what a ‘good’ or ‘optimal’ return would look like under a solved version

of the environment where agents performed as well as theoretically possible. Quali-

tatively, trained models will be rendered to visually inspect agent behaviors, offering

insights into the nature of the policies they’ve learned. This approach will allow us

to pinpoint instances of cooperation or identify potential shortcomings in the tested

algorithms. Essentially, this qualitative analysis delves into the agents’ behavioral

patterns, exploring whether observed behaviors can be attributed to specific components

or assumptions of the algorithm being evaluated.

5.1 Algorithms

We give a (very) brief introduction to each algorithm that was tested on these environ-

ments and present in the EPyMARL framework:

5.1.1 Independent Learning

These algorithms learn policies independently and simply treat other agents as part of

the environment.

IQL (Independent Q-Learning): IQL treats each agent as independent, with each

agent learning its own policy while treating other agents as part of the environment.

This approach does not consider any explicit coordination among agents.

IA2C (Independent Advantage Actor-Critic): IA2C is an extension of the Actor-

Critic method where each agent independently learns a policy and a value function,

without central coordination or communication.

IPPO (Independent Proximal Policy Optimization): An adaptation of the Prox-

imal Policy Optimization (PPO) algorithm for multi-agent settings. In IPPO, each

agent independently optimizes its own policy with the PPO framework, without explicit

coordination.

5.1.2 Centralised Multi-Agent Policy Gradient

These algorithms centralize training using global information but actions are selected

based on each individual agent’s observations.

COMA (Counterfactual Multi-Agent Policy Gradients): COMA uses a central-

ized critic to estimate the Q-value for each agent’s action while keeping decentralized
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policies. The algorithm utilizes counterfactual baselines to address the challenge of

multi-agent credit assignment.

MAPPO (Multi-Agent Proximal Policy Optimization): An extension of PPO for

multi-agent settings, MAPPO uses a centralized training approach with decentralized

execution. Each agent learns based on global information during training but only uses

its own local observations during execution.

MAA2C (Multi-Agent Advantage Actor-Critic): Building upon the Advantage

Actor-Critic framework, MAA2C centralizes training using information from all agents

but decentralizes execution, where each agent acts based on its own policy.

5.1.3 Value Decomposition

These algorithms decompose the joint value function into individual agents, thus actions

are coordinated but policies remain agent-specific.

VDN (Value Decomposition Networks): VDN decomposes the global Q-value

function into individual agent-wise value functions. By keeping agent policies decen-

tralized, VDN ensures the joint action-value function is a sum of individual agent value

functions.

Q-MIX: Q-MIX employs a mixing network to combine individual agent value

functions into a joint action-value function. While agents have decentralized policies,

the joint action-value function can represent interactions that are not possible with

simple addition as in VDN. (Rashid et al. (2020))

EPyMARL supports two additional algorithms: MADDPG and Pareto-AC. MAD-

DPG was excluded from testing due to its prolonged training times, which would

have added to computational limitations, and its (generally) suboptimal performance

in grid-world environments (Papoudakis et al. (2021)). While tests were conducted

with Pareto-AC, it displayed no learning. However this was likely not a problem of

the algorithm implementation itself rather of the default hyper parameters given in

EPyMARL not being a good fit for these environments. Thus, to maintain clarity, the

results of Pareto-AC tests were omitted from diagrams.

5.2 Results for each environment

The following subsections contain the results for each environment as well as a critical

analysis into observations found through the results and through observations of the



Chapter 5. Evaluation 30

rendered environment based on the final models after completing training.

5.2.1 Dance Crew

Beginning with Dance Crew, the goal of this environment was to see if agents could

learn an optimal dance routine given an egocentric view of the environment and a small

gridworld. As the simplest environment it was expected that at least some algorithms

would be able to solve this environment and achieve the maximum possible combined

reward of 1300 (13 over 100 timesteps).

Figure 5.1: (Top): Mean test return over 5.5M timesteps and across 5 seeds, with the

shaded lines representing the mean Std. Deviation across runs (Bottom): Max Reward

achieved at specified timestep by any of the five seeds

In the results, all algorithms except for COMMA, MAA2C, and MAPPO achieved

the maximum reward in at least one seed. COMMA consistently adhered to a suboptimal

policy, with agents only performing coordinated standard actions and overlooking the

significance of ‘flashy’ actions. Both MAA2C and MAPPO plateaued, exhibiting

two timesteps of peak reward combinations followed by one of standard actions. It

would appear that Centralised Multi-Agent Policy Gradient-based algorithms struggled
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in this environment, while Independent Learning and Value Decomposition thrived.

However, it must be noted that these suboptimal performances may simply be attributed

to suboptimal hyperparameter choices, this is one of the key limitations across the

evaluation of these environments, as multiple seeds needed to be trained for each

algorithm across many timesteps, while it would have been preferred to do additional

fine tuning this was not possible given the constraints in computational power as well

as time. In rendering, it can be seen that agents demonstrably grasped the essence of

evading actions that could jeopardize their peers, and understanding other’s limitations.

Most algorithms infact learn to minimise the instances of other agents being on the edge

of the grid. This behavior suggests that agents developed a holistic understanding of

their environment, recognizing the implications of their actions on peers and identifying

optimal progression paths.

In a fully cooperative setting where all agents share a combined reward, this game is

quite simple as it relies on agents essentially searching for a possible optimal sequence of

moves for each agent at each timestep. The game may become increasingly challenging

however as a mixed motive game where agents have conflicting interests due to the

reward structure, whereby performing a flashy action yields the largest individual

reward but requires collective cooperation from other agents. It would be interesting

to see if from a mixed motive standpoint agents may for example learn some different

leader-follower dynamics than in the fully cooperative case.

Two future research directions have been identified for this environment however

which may in themselves be more insightful. The first relates to Dance Crew as a

mixed motive game where agents receive their own rewards and must thus balance

being competitive as well as cooperative, agents here would have a higher incentive

to perform flashy actions themselves and this may lead to stronger conflicts between

agents and a bigger test of coopeartion.

The second interesting research direction for Dance Crew relates to it’s use within

an ‘AD-HOC’ setting, namely where agents are trained within a certain population of

agents to learn a dance routine but then inserted into a different scenario and must learn

to cooperate with agents they have not previously encountered.

5.2.2 ActiveTD

We begin by presenting the configurations for all ‘Tower Defense’ style environments

and configurations:
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Configuration ATD ATD

(Sparse)

PTD PTD

(Sparse)

ATD

’Maze’

Map Name None None None None ’maze’

HP Threshold 70 70 200 200 10

Max Ghost HP 6 6 19 19 3

Spawn Rate 0.5 0.5 0.5 0.5 0.2

Max Num Ghosts 14 14 12 12 3

Max Num Cannons - - 5 5 -

Place Timeout Reset - - 5 5 -

Zap Timeout Reset 3 3 2 2 2

Sparse False True False True False

Max timesteps 100 100 100 100 100

Table 5.1: Table showing configuration of environments with relevant parameters.

Figure 5.2 shows the results of the IA2C, IPPO, MAA2C, MAPPO and QMIX

algorithms on the Active Tower Defense (ATD) environment over 10 million timesteps

with the configuration described in 5.1. Observing the rendering of the MAPPO agents

(who performed surprisingly bad in these tests), the agents barely learn anything and

instead simply take themselves to the nearest high path density point (sometimes

they simply approach the nearest cell neighbouring a path regardless of density) and

repeatedly zap whenever their action is off cooldown, resulting in most of the ghosts

making it entirely through the path. Rarely do agents move from these points or try to

cooperate further. Meanwhile, QMIX learns to optimise agent’s pathing (for example

by going towards the ‘start’ if it does not see ghosts near it that it can shoot).
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Figure 5.2: (Top): ATD mean test returns and std. averaged across 5 seeds (Bottom):

ATD with Sparse rewards mean test returns and std. averaged across 5 seeds

The discrepancy between the performance of QMIX and the other algorithms

appears to also be in how cases of coming back from danger are handled. Occasionally

multiple ghosts will get close to the end of the path, which would require more than one

agent to deal with. All algorithms (except MAPPO) learn this and send multiple agents

towards the end to solve this however this is a ‘temporary’ solution. As we know, high

density points are located near the centre of the map (near corners primarily), and so it

is in the interest of agents to be close to these points as they offer the highest potential

value (by zapping more ghosts). QMIX learns to navigate back to these points quickly

and even (ocassionally) is happy to let a ghost through simply to stay close to these

points. While other algorithms appear to be less quick to return to optimal places and

are more prone to being stuck near the end of the map, at which point they have too

little time to despawn oncoming ghosts.
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Figure 5.3: (Left): Algorithms not learning to bring back agents from tailing ghosts to

the end (Right): QMIX agents succesfully returning to better positions after despawning

ghosts, rather than waiting for ghosts to arrive.

Unlike with Dance Crew, defining a maximum achievable return in these tower

defense environments is not obvious. As the consistency of ghosts spawning is (to

an extent) stochastic and based on the spawn rate, some episodes may offer a higher

opportunity for rewards than others, purely based on how regularly ghosts spawn. Some

additional constraints such as the maximum number of ghosts, or, more specifically, the

maximum possible total HP across all ghosts in the environment at any one timestep,

limit the stochasticity of the environment by placing hard limits however the maximum

achievable return is difficult to measure. As a guidance, I would recommend that since

the penalty should always be double or greater the HP of a ghost (for the reasons

described previously refering to reward structure), obtaining a positive return should be

considered ’good’ progress, as it shows ghosts are able to despawn close to twice as

many ghosts as they allow to get through. More so if we calculate the roughly optimal

expected returns this would look like the spawn rate × ghost HP × number of timesteps,

in this case this would be (0.5 × 6 × 100 = 300). However this number is still high as

it would imply ghosts should be constantly despawned instantly (on spawn). Thus for

this configuration, I expect total returns in the range of 225-275 should be considered

exceptional and close to maximum achievable returns.

Sparse rewards paint a different picture, firstly all algorithms seem to struggle much

more with sparse rewards (this is common amongst reinforcement learning problems

with sparse rewards generally) but actually we see that independent learning algorithms

begin learning much sooner, with MAA2C also learning something eventually. The

agent’s policies are similar to that of MAPPO in the normal case however, where agents

just stay close to the path without moving much and zap ghosts whenever their zap

cooldown is at 0.
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5.2.3 PassiveTD

We describe how an optimal solution (which never allows ghosts to reach the end) is

possible by showing that towers can be strategically placed to cover all points with a

high path/cell density such that any agent going through the path will be despawned.

Figure 5.4: Image showing key cells where towers have a path/cell density of 4 or 5

Placing 12 of the available 15 (total) towers at the cells highlighted above and

placing the remainder of the 3 towers at any cell with a path/cell density of 3 guarantees

all ghosts of 19HP will be despawned. We can calculate the total path area covered

by the cannons (including duplicates, since ghosts can get hit by multiple cannons in

the same cell) as (8×5)+ (5×4)+ (3×3) = 62 dividing this by 3 (how frequently

towers zap) we get that each ghost will be zapped just over 20 times in a single run

in expectation. However, one specific timing combination allowed a ghost to only be

zapped 19 times and so the max HP of ghosts was capped at 19 in this configuration.

Furthermore there are certain points where an agent could sell a placed tower, rotate,

place a new tower and repeat to get an additional hit on a ghost if needed.

Figure 5.5 shows that although there exists an optimal solution which allows agents

to successfully solve the environment and thus receive no penalties, even after 15 million

timesteps all environments are on average still receiving negative returns. With no clear

differentiation between algorithms (infact MAPPO performed comparatively well here

against other algorithms compared to ATD), we turned to rendering the environment

for more insights as to what could be causing agents to fail in cooperating to solve

this environment. We also see again the impact sparse rewards can make on learning,

limiting the learning of agents significantly with agents barely increasing their rewards

after the initial 4 million timesteps.
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Figure 5.5: (Top): PTD mean test returns and std. averaged across 5 seeds (Bottom):

PTD with Sparse rewards mean test returns and std. averaged across 5 seeds

We now focus on the rendering of the algorithms under the default (non-sparse)

rewards to evaluate and hypothesise why agents are unable to learn an optimal policy.

We note that, as Figure 5.6 shows, agents predominantly place towers towards the

path’s beginning, exhibiting only a basic understanding of the environment without

recognizing high-density points (with agents even occasionally placing towers where

there are no path cells nearby). This strategy falters as higher HP ghost waves advance,

and thus agents are greatly penalised at later timesteps leading to low returns.

One potential reason for such behavior could be the inherent delay between the

tower placement and the subsequent rewards. As rewards are attributed to zaps from

previously placed towers, algorithms might find it challenging to correlate pivotal

actions, such as optimal tower placements, with delayed rewards. On the other hand,

initial tower placements near the path’s start offers (close to) immediate and consistent

rewards due to the frequent spawning/despawning of low-HP ghosts at early timesteps,

and so this might make it easier for agents to associate these early actions with the

reward.

It’s also noteworthy that instances of ‘free riding’ were observed across all algo-
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rithms. In the depicted episode (which was nearing completion), not all towers have

been placed, this highlights a recurring pattern where an agent would position them-

selves at the map’s bottom left consistently and place 2 or 3 fewer towers than the other

agents. Showing a clear lack in cooperation, as the agent in question was rewarded the

same as other agents while doing significantly less. This was particularly evident when

ghosts would pass along final path cells and the agent would still not place towers .

Moreover the use of the ‘SELL’ action was extremely infrequent, however, this

might stem from the complexity in understanding the value of the function. In a

fully cooperative context, selling any tower sacrifices some incoming rewards, and the

agent faces the challenge of identifying a more strategic placement, a task which, as

demonstrated, is hard for these agents.

Figure 5.6: Agents after 15 million timesteps only learn to place turrets near the beginning

of the path across all algorithms

5.2.4 Alternative configuration: ‘Maze’

The ‘maze’ map illustrates how careful configuration of terrain and clear environment

goals can produce diverse scenarios. In this setting, agents struggle even more with

their ego-centric partial observability, as they only observe the nearest obstacles in the

cardinal directions. The challenge thus becomes not only despawning the ghosts but

also navigating the maze. The high density of obstacles makes any tactic of tailing

ghosts entirely unfeasible, and so, agents must refine their timing, calculating when to

reach cells adjacent to the path to zap nearby ghosts. Arriving too soon to a cell wastes

time, but arriving late risks ghosts escaping. Effective cooperation hinges on agents’

continuous assessment of their own, their peers’, and the ghosts’ positions, ensuring

efficient task distribution and navigation.
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Figure 5.7: Results of running the Active TD environment on the provided ‘maze’ map

configuration

This environment configuration was specifically designed to be simple and easy,

featuring a low number of ghosts and consistently low ghost HP, and serving more as an

illustration of the value and variety of configuration. As indicated by Figure 5.8, most

algorithms excel in this task (MAPPO being the exception), with a reward approaching

30 considered notable given the ghosts’ low HP and spawn rate, leading to more limited

reward opportunities. Agents typically stay near the bottom, facilitating left-to-right

movement and enabling zaps on ghosts below, capitalizing on high path density cells.

Moreover, they learn to use their ‘zaps’ much more cautiously to ensure availability

when confronting a ghost.

Figure 5.8: Render of a QMIX model after 10Million Timesteps in ’Maze’ configuration

Interestingly there would be a slightly better solution that agents do not learn, and

that is to shift more focus towards the left of the map (closer to the beginning) which

would allow agents to despawn ghosts quicker, thus allowing more new ghosts to spawn,

presenting an opportunity for higher rewards.
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Conclusion

6.1 Summary of the project

The focus of this project was on the design, implementation and testing of novel MARL

environments focused on cooperation, and is a direct response to the limited number of

current MARL environments available for cooperative MARL research. This project

began by introducing the problem statement, subsequently diving deep into the current

landscape of MARL environments and providing analysis on how environments are

built to test cooperative capabilities. This analysis also discussed the cooperative

capabilities typically assessed within these environments and identified opportunities

for new cooperative capabilities to be tested.

Following this three distinct environments were proposed, beginning with Dance

Crew, an environment where agents must learn to coordinate their actions and learn

how the consequences of their actions may limit the future actions of other agents.

While Dance Crew is a simple environment and was comfortably solved by many

of the algorithms tested on it, there may be value in the environment as a mixed

motive game due to the potential competitive conflicts caused by the presence of flashy

actions. Although simple, it serves as a valuable addition to the collection of available

cooperative MARL environments.

The next two environments were built based on the Tower Defense genre, and can be

thought of as an active and passive version of the game, where the agents either embody

the towers directly or must strategically place them themselves. These two environments

were significantly more complex than Dance Crew and introduced new cooperative

capabilities to be tested. Active TD is a dynamic environment where agents must have

precise spatial coordination as well as a strong understanding of their action timing. As
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was observed in the evaluation, this environment provided various additional challenges

such as recovering from dangerous situations which caused distinct differences in

performances between algorithms.

Passive TD on the other hand introduces an entirely new aspect of ownership to

cooperation, where agents can place towers strategically and should cooperate in the

territory they cover to despawn ghosts effectively. When evaluating this environment

we saw a surprisingly low return across all environments, with very little differences in

performances between them. We speculated on potential reasoning behind these low

results, emphasising the struggle of algorithms in associating actions and rewards due to

the temporal delay as well as the difficulty agents faced in understanding the utility of the

sell action. We then showed a new configuration of the Active TD environment, showing

how modifying the environment can be used to test diverse cooperative capabilities and

the importance of thoughtful configuration in environment creation.

6.2 Future Work

This project, which has a primary focus on providing new avenues for future research

through the development of innovative environments, placed a strong emphasis on

the future applications and longevity of it’s environments at each step of the process.

Environments were designed with the researcher in mind from the foundations of

making environments intuitive through to laying out a structured mode for analysis of

results. Future research should make use of the large configuration freedom of these

environments and develop their own versions, always adhering to correct evaluation

procedures and performing abalation studies whenever things are changed.

We note that although the evaluation of these environments provides an initial

benchmarking of these environments, due to computational limitations hyperparameter

tuning of the algorithms was not possible, thus a first step for future research should be

on trying to optimise the rewards obtained by multiple algorithms on these environments.

Furthermore, and perhaps the most exciting application for future research (along-

side with the customisation of new scenarios), the environments presented in this project

have significant additional value as partially observable stochastic games, where agents

no longer share a single reward function but instead receive their own rewards. Research

into how agents balance maximising their own individual rewards against pursuing less

obvious but vastly more ambitious ‘optimal’ rewards can provide valuable insights on

algorithmic capabilities and the broader, intricate and fascinating, area of cooperation.
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