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Abstract

Multi-agent reinforcement learning (MARL) is a rapidly expanding field at the fore-

front of current research into artificial intelligence. We examine MADDPG, one of

the first MARL algorithms to use deep reinforcement learning, on discrete action en-

vironments to determine whether its application of a Gumble-Softmax impacts its per-

formance in terms of average and maximum returns. Our findings suggest that while

Gumbel-Softmax negatively impacts performance, the deterministic policy that neces-

sitates its use performs far better with the multi-agent actor-critic method than the

stochastic alternative we propose without Gumbel-Softmax.
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Chapter 1

Introduction

Multi-agent reinforcement learning (MARL) defines a method whereby multiple agents

repeatedly interact with the same environment to solve a given multi-agent task (e.g.

[10]). Proposed by Lowe et al. [26], MADDPG is one of the first MARL algorithms to

use deep reinforcement learning and, since its introduction, is widely used as a baseline

in MARL research (e.g. [9]).

MADDPG combines the multi-agent actor-critic (MAAC) method with the DDPG

algorithm [24]. Lowe et al. [26] introduced the MAAC method to address the chal-

lenges faced by fully decentralised algorithms such as IQL and IAC within multi-

agent tasks. Their MAAC implementation differs from these algorithms because it

allows information to be shared between agents during training, creating a stationary

environment for the individual agents [26].

Lowe et al. [26] found that MADDPG could learn cooperative behaviours in multi-

agent tasks where its decentralised counterparts could not. Thus, their work suggests

that the MAAC method has advantages over fully decentralised methods. Unfortu-

nately, Lowe et al. [26] did not explain their decision to implement MAAC with DDPG.

The DDPG algorithm is designed for continuous actions. Therefore, Lowe et al.

[26] employ a Gumbel-Softmax to ensure that MADDPG would work for discrete ac-

tions [21]. However, recent work has hypothesised that Gumbel-Softmax introduces

reparameterisation bias, worsening MADDPG’s performance in terms of average re-

turns [35].

Our work explores the researchers’ hypothesis that Gumbel-Softmax hinders MAD-

DPG’s performance in discrete-action spaces and is motivated by the supposition that

an alternative implementation of the MAAC method with a discrete-action RL algo-

rithm would outperform MADDPG on multi-agent discrete-action tasks in terms of

1



Chapter 1. Introduction 2

average returns or at least perform similarly while being easier to tune.

Stated clearly, we investigate the following research questions: (1) Does Gumbel-

Softmax hinder MADDPG’s performance for discrete actions? (2) Can we create an

alternative MAAC algorithm, designed for discrete actions, that outperforms MAD-

DPG in terms of returns or ease of use?

Therefore, we propose MAPPOQ, an algorithm that implements the MAAC method

with the PPO RL algorithm. We compared the performances of MAPPOQ, MADDPG,

and several baselines across a diverse range of multi-agent tasks. Our results suggest

that there exists a more nuanced trade-off than we had first expected between imple-

menting MAAC with DDPG and a Gumbel-Softmax vs implementing MAAC with an

RL algorithm designed for discrete action spaces.

While Gumbel-Softmax did appear to cause worse performance for MADDPG than

MAPPOQ on the less complex discrete tasks, as the complexity increased, MADDPG

outperformed MAPPOQ. Thus, suggesting that the reduction in policy variance from

DDPG may outweigh the reparameterisation bias caused by Gumbel-Softmax. These

points shall be explored in greater detail in the coming chapters.

The remainder of the thesis is structured into six separate chapters. First, the Back-

ground chapter, where we cover the necessary pre-requisites for understanding the

project. Next, the Related Work chapter outlines several similar approaches in the lit-

erature, and we explain how our algorithm is different. After, the Methods and Results

chapters provide details of the experiments we carried out. Then within the Discussion

chapter, we expand on the results and the project as a whole, outlining limitations and

our speculations. Finally, in the Conclusion chapter, we state our concluding remarks

and provide suggestions for future work.



Chapter 2

Background

The background chapter outlines foundational material required for understanding the

project. For an in-depth view on the topics discussed, Richard Sutton and Andrew

Barto’s Reinforcement Learning: An introduction is highly recommended.

2.1 Markov Decision Processes and Value Methods

As will be shown, Markov Decision Processes (MDPs) provide the necessary frame-

work to discuss learning via interaction for a pre-defined goal in the single-agent case.

Later in this chapter, we will introduce another framework specifically for the multi-

agent case. However, first, it is necessary to understand MDPs, as many of the multi-

agent algorithms defined later build upon the details outlined here.

Within an MDP, an agent interacts with an environment at discrete time intervals

t. The environment then provides transition information for each of the agent’s actions

At , including the new state of the environment St+1, and the reward achieved by the

agent, Rt+1. Consequently, repeated interactions between agent and environment lead

to a transition history that appears as S0,A0,R1, . . . ,St ,At ,Rt+1. For convenience, we

write the sets of states, actions and rewards within an MDP as S,A,R, respectively.

Crucially, MDPs satisfy the Markov property (e.g. [28]), meaning that all infor-

mation on past agent-environment interactions are contained within the current state

[44, p. 49]. Therefore, given the Markov property, MDPs allow us to define a discrete

probability distribution by treating the rewards and next states as random variables,

conditioned solely on the previous state and action. The distribution can be written as

3



Chapter 2. Background 4

follows:

p(s′,r | s,a) := Pr{St = s′,Rt = r | St−1 = s,At−1 = a}, (2.1)

for all s′,s ∈ S,r ∈R, and a ∈ A(s).
Following this, it is possible to calculate the expected value for any given state

or state-action pair in the environment [44, p. 58-59]. Moreover, by utilising the

Bellman Equations [5], one can define functions that map any state or state-action pair

to their respective expected return value for a given probability distribution over the set

of possible actions. The probability distribution is referred to as the agent’s policy π

[44, p. 59]. The state and state-action value functions for a given policy π are defined

as:

vπ(s) = Eπ[Gt | St = s],∀s ∈ S (2.2)

qπ(s,a) = Eπ[Gt | St = s,At = a],∀s ∈ S,∀a ∈ A(s) (2.3)

where Gt is the total returns attained after a given timestep t. To handle continuous

tasks and to prevent over valuing future returns, a discount factor γ is applied to the

rewards. We therefore define the total returns as Gt = ∑
∞
k=0 γkRt+k+1.

Value-based methods are a family of methods that utilise the value functions above

to solve reinforcement learning (RL) tasks [44]. That is, they attempt to converge on

a policy that maximises the value function for all states of a given environment. Such

a policy is called the optimal policy π*. The following section discusses an alternative

family of methods where agents learn by improving policies directly without needing

to iterate over expected return values.

2.2 Policy Gradient Methods

This section outlines a set of methods that enable direct policy updates.

Policy gradient methods do not use tables to store policy information. Instead, they

use a weighted function, called the parameterised policy, that maps states to the agent’s

associated action probabilities, [45]. The following shows an example for defining a

parameterised policy with the softmax function, which is linear in the feature vectors

[44, p. 322]:

π(a | s,θ) = eh(s,a,θ)

∑b eh(s,a,θ)
, (2.4)
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where θ ∈ Rd′ , h(s,a,θ) = θT x(s,a), and x(s,a) ∈ Rd′ are the feature vectors of the

environment.

Policy parameterisation provides the first important step for defining policy gra-

dient methods; the second is provided by the result from the policy gradient theorem

[45], which states:

∇θJ(θ) =
∫
S

ρ
π(s)

∫
A

∇θ logπθ(a | s)Qπ(s,a)dads (2.5)

= Es∼ρπ,a∼πθ
[∇θ logπθ(a | s)Qπ(s,a)] (2.6)

where ∇J(θ) ∈ Rd′ is the gradient of an arbitrary scalar performance measure with

respect to θ, and ρπ(s′) :=
∫
S ∑

∞
t=1 γt−1 p1(s)p(s→ s′, t,π)ds is the discounted state

distribution.

The policy gradient theorem proves that to increase the performance of our pol-

icy π, as measured by an objective function J(θ); we can move the parameter θ in a

direction proportional to the expected reward and inversely proportional to the proba-

bility of taking the action under the policy. Intuitively, this makes sense, as the higher

the reward, the more we should choose the same action in the future. Hence, apply-

ing gradient ascent to the terms within the expectation will move the policy parameter

theta in a direction that maximises the scalar performance measure function—in turn,

converging towards the optimal policy [45], [44, pp. 324-327].

Whilst policy gradient methods are a great tool [45], vanilla implementations like

the REINFORCE algorithm suffer from high variance in their gradient estimates, and

thus slow convergence rates [49]. The issue is primarily caused because of the require-

ment to use the complete episode returns in the actor’s loss function since the repeated

sampling of actions from the actor’s policy probability distribution adds noise into the

gradient estimates [39]. Moreover, the states and rewards are dependent on these ac-

tion samples. Hence, we effectively accumulate the noise introduced by every action

sampled in the episode by using complete episodes returns. Additionally, it is known

that the variance in the gradient estimation is linearly proportional to the transition

history [33].

The following section discusses a technique that addresses the issues with policy

gradient methods, and leads to a new set of methods that are being applied in multiple,

more modern RL algorithms (e.g. [31, 40, 24, 35? ]).
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2.3 Actor-Critic Methods

Actor-Critic methods build upon a combination of ideas from both value-based and

policy-based learning. Critically, they address the high variance issues that persist in

policy gradient methods [23], [44, pp. 331-332]. This section focuses on detailing

actor-critic methods and examining why they are used for many RL tasks.

As the name suggests, actor-critic methods come in two parts. Firstly, the actor that

maintains a policy and acts in the environment, and secondly, the critic that learns the

expected return values with a value-based method. Accordingly, actor-critic methods

approximate the total returns of an episode, with the critic updating a temporal differ-

ence (TD) target [44, pp. 331-332]. Hence, they replace the complete returns needed

for the policy update with the critic’s TD target enabling online policy updates [42].

That is, the policy updates can take place before the completion of an entire episode.

Below we give the TD target, the critic update and the actor update:

δt+1 = R+ γv̂(S′,wt)− v̂(S,wt), (2.7)

wt+1 = wt +α
wt δt+1∇v̂(S,wt), (2.8)

θt+1 = θt +α
θt δt+1∇θt logπθt (a | s), (2.9)

where, v̂(S,wt) is the approximate value function parameterised by w, and αw,αθ > 0

are the step sizes.

Estimating the complete episode returns with a TD target reduces the number of

observed transitions required to update the policy’s gradient. Consequently, the TD

target reduces the variance caused by sampling actions from the actor’s policy distri-

bution for the same reasons discussed at the end of the previous section [44, p. 124].

Moreover, the use of a TD target enables the direct learning of the policy to be extended

to continuous tasks where it is not possible to calculate the complete returns because

they have no ending. Therefore, actor-critic methods are essential for any algorithm

applying policy gradient updates to continuous tasks or tasks with very long episodes

[42], [44, p. 124]. Additionally, any algorithm performing policy gradient updates in

challenging environments can also benefit from the reduced variance of actor-critic

methods [23, 45].

An on-policy RL algorithm updates the current policy with samples it collected.

Conversely, off-policy algorithms update with samples collected by a different policy
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than the current one [44, pp. 100]. Below are two examples of on-policy actor-critic

algorithms.

Synchronous Advantage Actor-Critic (A2C): The on-policy actor-critic algorithm,

A2C, utilises the advantage within its policy updates [31]. Specifically, the advantage

function is defined as the difference between the expected state-action value and the

expected state value. By utilising the Bellman equations, the state-action value func-

tion can be rewritten in terms of the state value function, Q(st ,at) = rt + γrt+1 + · · ·+
γT−t+1rT−1 + γT−tV (sT ). Therefore, we arrive at the following equation:

At = rt + γrt+1 + · · ·+ γ
T−t+1rT−1 + γ

T−tV (sT )−V (st), (2.10)

where T is some finite time horizon less than the episode length. Hence, by utilising the

advantage in place of the complete returns, we can write the gradient of the objective

function as:

∇Jθ = Et [∇θπθ(at | st)At ] (2.11)

Finally, the A2C algorithm trains synchronously on several parallel environments to

ensure independent and identically distributed (i.i.d) transition samples [31].

Proximal Policy Optimisation (PPO): PPO is an alteration of the A2C algorithm [38].

It replaces the log action probabilities in the A2C policy update with an importance

sampling ratio between the old and new policies. Additionally, Schulman et al. [38]

clip the importance ratio to prevent the updates to the policy gradient from being too

large. Hence, Schulman et al. [38] propose the following PPO objective function:

∇Jθ = Et [min(rt(θ)At ,clip(rt(θ),1− ε,1+ ε)At)] , (2.12)

where rt(θ) =
πθ(at |st)

πθold(at |st)
, and At is the general advantage estimation (GAE), given by:

At = σt +(γλ)σt+1 +(γλ)2
σt+2 + · · ·+(γλ)T−t+1

σT−1, (2.13)

for σt = rt + γV (st+1)−V (st).

Lastly, the PPO algorithm performs multiple training updates with the same ad-

vantage estimation. In this way, PPO achieves higher sample efficiency than other

on-policy algorithms [38, 52].

The following section examines a policy gradient method where action selection is

no longer stochastic.
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2.4 Deterministic Policy Gradient

Introduced by Silver et al. [40], Deterministic Policy Gradient (DPG) is a variant of

policy gradient whereby actions are no longer sampled from a stochastic policy condi-

tioned on the state, e.g. a = π(.|s), and instead are selected deterministically, a = µ(s).

This section explores how the DPG method works, and why according to the authors, it

significantly improves upon stochastic policy gradient (SPG) methods in environments

with high dimensional action spaces.

Although we no longer sample actions in DPG from a stochastic policy, it is still

possible to calculate the policy gradient [40]. Accordingly, we integrate solely over

the state space distribution since the actions are deterministic. This is relevant to the

performance claims for DPG made by Silver et al. [40], which we will discuss below.

Formally, the deterministic objective function is as follows:

J(µθ) =
∫
S

ρ
µ(s)r(s,µθ(s))ds (2.14)

= Es∼ρµ [r(s,µθ(s)] . (2.15)

Subsequently, the deterministic policy gradient theorem then provides the following

result:

∇θJ(µθ) =
∫
S

ρ
µ(s)∇θµθ(s)∇aQµ(s,a)|a=µθ(s)ds (2.16)

= Es∼ρπ,a∼πθ
[∇θµθ(s)∇aQµ(s,a)|a=µθ(s)] (2.17)

As shown in (2.16), DPG methods do not integrate over the action space. This

is in contrast to SPG methods, which require two integrals to calculate the objective

function–one over the action space and one over the observation space as shown in

equation (2.5). In their paper, Silver et al. [40] show that as a result of this, DPG

has an improved computational cost over SPG as the number of actions in the action

space grows. Moreover, Silver et al. [40] also show that DPG significantly outperforms

its stochastic counterpart in high-dimensional action spaces, since SPG requires many

more environmental samples to estimate the policy gradient. A possible drawback for

DPG is that it loses the inherent exploration from sampling a policy distribution. How-

ever, Silver et al. [40] propose a method to surmount this issue that sees DPG applied

off-policy to allow for the use of a stochastic behavioural policy and subsequently

increases exploration.

Silver et al. [40] introduce a stochastic behavioural policy that collects transitions

from the environment. These transitions are then passed to a deterministic target policy
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that updates the policy gradient estimate. Furthermore, Silver et al. [40] highlight

that because DPG removes the integral over the actions, importance sampling is not

required in the actor update. Additionally, by using Q-learning for the critic, they can

also avoid using importance sampling in its update. Specifically, we write the critic

update as follows:

wt+1 = wt +αwδt∇wQw(st ,at), (2.18)

where

δt = rt + γQw(st ,µθ(st+1))−Qw(st ,at). (2.19)

Subsequently, we can derive the following off-policy deterministic policy training

update, where compatible function approximation enables us to replace the gradient of

the Qµ with the critic gradient [40]:

θt+1 = θt +αθ∇θµθ(st)∇aQw(st ,at)|a=µθ(s) (2.20)

The following section will focus on an algorithm that builds upon DPG by utilising

some of the techniques applied in the Deep Q-learning Network (DQN) algorithm

introduced by researchers at DeepMind [30].

2.5 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an algorithm proposed by Lillicrap

et al. [24]. The authors’ primary motivation for developing DDPG was to actualise the

advantages afforded by DPG methods. They discerned that by combining deterministic

policy updates with parts of DQN [30] they could create a novel algorithm that would

successfully learn policies in high-dimensional and continuous action spaces [24]. This

section will briefly outline their proposed DDPG algorithm.

As mentioned, DDPG builds upon concepts from the DQN algorithm [24, 30];

specifically, these are: (1) using a neural network to approximate state-action values,

(2) employing an experience replay buffer to hold training samples, and (3) the use of

frozen target networks.

Firstly, neural networks can be trained to approximate the state-action value func-

tion. Within high dimensional environments, storing a table of state-action values

becomes impractical. Moreover, in the case of continuous action spaces, it is impossi-

ble to store such a table [24],[44, pp. 223-228]. Hence, neural networks allow DDPG
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to operate as intended—in environments with continuous action spaces. Secondly, an

experience replay buffer provides independent environment samples to the critic and

actor networks; such a buffer is necessary because neural networks require i.i.d sam-

ples to train effectively [30]. The experience replay buffer requires the algorithm to

be off-policy, as the training updates are carried out on samples collected from a ran-

dom historic policy rather than the one being updated[24]. Lastly, the frozen target

networks from the DQN algorithm were employed to help handle the non-stationarity

caused by the moving values of the actor and the critic between updates. However,

aside from these features, the core of DDPG is simply the off-policy deterministic

actor-critic method [24]; indeed, the algorithm’s pseudocode, given below, demon-

strates this point.

Algorithm 1 DDPG algorithm

1: Randomly initialise critic Q(s,a | θQ) and actor µ(s | θµ) with weights θQ and θµ

2: Initialise target networks Q′ and µ′ with weights θQ′ ← θQ,θµ′ ← θµ

3: Initialise replay buffer R

4: for episode = 1,M do
5: Initialise a random process N for action exploration

6: Receive initial observation state s1

7: for t = 1,T do
8: Select action at = µ(st | θµ)+Nt according policy and exploration noise

9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st ,at ,rt ,st+1) in R

11: Sample a random minibatch of N transitions (si,ai,ri,si+1) from R

12: Set yi = ri + γQ′(si+1,µ′(si+1 | θµ′) | θQ′)

13: Update critic by minimising the loss: L = 1
N ∑i(yi−Q(si,ai | θQ))2

14: Update the actor policy using the sampled policy gradient:

∇θµJ ≈ 1
N ∑

i
∇aQ(s,a | θQ)|s=si,a=µ(si)∇θµµ(s | θµ)|si

15: Update the target networks:

θ
Q′ ← τθ

Q +(1− τ)θQ′

θ
µ′ ← τθ

µ +(1− τ)θµ′

16: end for
17: end for

Importantly, Lillicrap et al. [24] make the assumption for continuous action spaces

that the deterministic action selection is differentiable. The same does not hold true
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on discrete action spaces. However, DDPG can train on discrete action spaces through

the use of a Gumbel-Softmax [21] to ensure the deterministic action selection can be

backpropagated through during training (e.g. [26]).

This section has described the DDPG algorithm and explained its advantages over

other RL algorithms in high-dimensional, continuous action space environments. The

following section concludes the background chapter by introducing multi-agent rein-

forcement learning.

2.6 Multi-Agent Reinforcement Learning

The topics discussed so far in the background chapter have considered single-agent

RL. However, as is the project’s focus, we now turn our attention to multi-agent RL

(MARL), a method whereby multiple agents repeatedly interact with the same envi-

ronment to learn to solve a given multi-agent task (e.g. [34]). Since the previously

introduced MDP framework is explicitly defined for the single-agent RL case, we now

consider an alternate framework for MARL.

Partially-observable stochastic games (POSGs) for N agents (e.g. [18]) define

seven important elements. The first four of which hold information on the state of the

environment and the agents. They are given by: N = {1, . . . ,N}, the set of all agents;

S, the state space describing the possible arrangements of all agents; the joint obser-

vation space O = O1×·· ·×ON ; and lastly, the joint action space A= A1×·· ·×AN .

The final three elements allow POSGs to provide new environment transitions.

Each is a function mapping from a subset of the previously observed information and

are given formally here: Ω : S ×A 7→ ∆(O), the observation function, it defines the

local observations for each agent oi ∈ Oi; P : S ×A 7→ ∆(S) defines a distribution

over next states given the current state and joint actions. Finally,Ri defines the reward

function for all agents i and is given byRi : S ×A×S 7→ R.

The learning objective in POSGs is to find policies πππ = (π1, . . . ,πN) for all N

agents, such that the discounted return of each agent i, Ri = ∑
T
t=0 γtri

t , is maximised

with respect to the other policies in πππ, where ri
t ∈ Ri is the individual agent reward, γ

is the discount factor and T is the maximum timestep of an episode. We write this as:

∀i : πi ∈ argmaxπ′i
E[Ri | π′i,πππ−i], where πππ−i = πππ\{πi}.
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Related Work

Centralised and decentralised methods refer to the information passed to agents at

training and execution time. A fully centralised method trains and executes agents

on global information. In contrast, a fully decentralised method trains and executes

agents solely on local information. Notably, most MARL methods employ either a

fully centralised or fully decentralised approach [19]. Unfortunately, these two meth-

ods can sometimes fall short. For example, complete centralisation, which conditions

each agent’s policy on the joint action space, is not always practical for tasks with large

action spaces or many agents [13]. Furthermore, decentralised methods often fail to

learn complex behaviour between agents, such as cooperation [35].

Consequently, researchers have introduced the centralised training and decentralised

execution (CTDE) method to fill the gap [15, 22]. In brief terms, CTDE utilises global

information during training—made feasible in real-world applications with simula-

tors where agents can communicate freely [13]—while executing agent policies con-

ditioned solely on local information.

The algorithm that we propose utilises the CTDE method. Therefore, this section

will examine various other CTDE algorithms that already exist within the literature

to provide context that helps understand how our findings add to the current state of

MARL research. We also briefly outline a decentralised method utilised as a baseline

within our research for the same reason.

3.1 Independent Actor-Critic

Independent Actor-Critic (IAC) algorithms are decentralised forms of MARL. First

introduced by Tan [46] with Independent Q-learning, they are often used as baselines

12
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in research papers (e.g. [13, 52]) as they provide a naive approach to the MARL

problem, and yet frequently prove to be effective on tasks with fewer agents and fewer

complexities (such as required agent cooperation) in the environment [35, 29]. As an

example, we focus on the Independent synchronous Advantage Actor-Critic algorithm,

a variant on A2C [31, 12].

3.1.1 Independent synchronous Advantage Actor-Critic (IA2C)

IA2C operates multiple actors within an environment. Each actor’s policy is updated

with a critic, which receives local observations—identical to A2C [31]—forcing the

agents to operate and act independently [12]. As with the A2C algorithm, IA2C utilises

multiple parallel environments to gather i.i.d transition samples. Additionally, each

agent in IA2C minimises the A2C loss [35]. Our proposed algorithm utilises CTDE,

a method shown to surpass independent algorithms, in terms of both maximum and

average returns, in environments that require coordination between agents.

3.2 Centralised Policy Gradient

As mentioned, several CTDE algorithms already exist within the MARL literature.

These include Multi-Agent DDPG [26], Multi-Agent A2C (e.g. [35]), Multi-Agent

Proximal Policy Optimisation [52], and Counterfactual Multi-Agent [13]. We describe

each, examining their advantages and disadvantages for different MARL environments

[35]. Furthermore, we also discuss how our proposed approach looks to resolve some

of the issues faced by the current algorithms.

3.2.1 Multi-Agent DDPG (MADDPG)

Within their paper, Lowe et al. [26] introduce the Multi-Agent Actor-Critic (MAAC)

method. In addition, they also propose an original algorithm, called Multi-Agent

DDPG (MADDPG), that combines the single-agent DDPG algorithm with their MAAC

method.

Precisely, MAAC is a CTDE method [26], where the critic is conditioned on the

joint state and action, and the actor is conditioned on local observations. Formally, the

critic is written: Qπ
i (x,a1, . . . ,aN), where x = (o1, . . . ,oN) ∈O is the joint observation,

and a1, . . .aN the joint action, and the outputs are the joint-state value for agent i ∈N .
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Furthermore, each Qπ
i is trained separately allowing agents to learn conflicting rewards

in competitive settings [26].

The objective function is the expected return for each agent J(θi) = E[Ri], and we

write the gradient estimate for the objective function as follows:

∇θiJ(θi) = Es∼pπππ,ai∼πi[∇θi logπi(ai | oi)Qπππ
i (x,a1, . . . ,aN)], (3.1)

MADDPG extends MAAC to work for deterministic policies. That is, each agent

minimises the DDPG loss [24]. We therefore write the gradient estimate of the MAD-

DPG objective function as:

∇θiJ(µi) = Ex,a∼D[∇θiµi(ai | oi)∇aiQ
µµµ
i (x,a1, . . . ,aN)|ai=µi(oi)], (3.2)

where µµµ represents the deterministic policies for all N agents, parameterised with

respect to θi for each agent i.

Notably, Lowe et al. [26] test the MADDPG algorithm on discrete action space

environments, where the assumption that the deterministic actions are differentiable

with respect to the policy parameter does not apply [24]. Hence, Lowe et al. [26]

employ a Gumbel-Softmax to ensure that MADDPG’s actions remain differentiable in

discrete action spaces [21].

Following on, Lowe et al. [26] demonstrate that MADDPG provides an advan-

tage over independent methods in environments where complex coordination between

agents is necessary [32]. Papoudakis et al. [35] found similar results for MADDPG in

the same Multi-agent Particle Environments (MPEs) used by Lowe et al. [26]. How-

ever, they also found that MADDPG achieved far lower average and maximum returns

when tested on other discrete action environments (e.g. [1, 36]); even when compared

to independent algorithms. Papoudakis et al. [35] suggest that the biased categorical

reparameterisation introduced by Gumbel-Softmax could be causing the poor returns

observed in the discrete action environments.

Our proposed algorithm removes the need for a Gumbel-Softmax, by combining

the MAAC method with a stochastic policy gradient algorithm, instead of DDPG.

Thus, comparing our algorithm against MADDPG on discrete action environments

should provide insight into how Gumbel-Softmax affects the observed returns for

MADDPG.
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3.2.2 Multi-Agent A2C (MAA2C)

MAA2C is a CTDE variant of the IA2C algorithm. As with IA2C, policy updates

are conditioned on the actions taken by the individual agents, and baselined with the

advantage function. However, unlike IA2C, MAA2C applies a centralised critic con-

ditioned on the joint state. In particular, this also differs from MADDPG where the

critic is conditioned on both the joint state and joint action.

Explicitly, the objective function for MAA2C is the expected return for each agent,

J(θi) = E[Ri], and the gradient estimate is given by:

∇θiJ(θi) = Es∼pπππ,ai∼πi[∇θi logπi(ai | oi)Aw(x,ai)], (3.3)

where Aw(x,ai) = Ri + γVw(x′)−Vw(x), and w ∈ Rd are the state-value weights learnt

by the critic during training.

Regarding the algorithms average and maximum returns, Papoudakis et al. [35]

found that MAA2C performs competitively against other MARL algorithms in all

except the challenging StarCraft Multi-Agent Challenge (SMAC) [36]. These find-

ings for MAA2C on SMAC are also supported by Vasilev et al. [47], while utilising

MAA2C as a baseline in their experiments. Moreover, given that the main difference

between IA2C and MAA2C is the centralised critic condition.

Importantly, MAA2C can not be used to answer our research question because it

conditions the critic solely on the joint observation, and therefore, does not employ

the MAAC method utilised by MADDPG [26]. Thus, our work differs from MAA2C

because we will condition the critic on both the joint state and joint action, provid-

ing a clear comparison to determine Gumbel-Softmax’s impact on MADDPG within

discrete action environments.

3.2.3 Multi-Agent PPO (MAPPO)

MAPPO is a CTDE extension of PPO [52]. Specifically, the critics in MAPPO learn a

centralised state value function, while the actors’ policies are conditioned on the local

observations and are updated by maximising the PPO objective function (2.11).

L(θ) =
1

Bn

B

∑
i=1

n

∑
k=1

min
(

r(k)
θ,i A(k)

i ,clip(r(k)
θ,i ,1− ε,1+ ε)A(k)

i

)
+ξ, (3.4)

where B refers to the batch size, n the number of agents, r(k)
θ,i =

πθ(a
(k)
i |o

(k)
i )

πθold(a
(k)
i |o

(k)
i )

, and A(k)
i

is the GAE method, computed using (2.12) with the state value function replaced with
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the joint state value. Additionally, ξ is the sum over the each agents’ policy entropy

averaged per batch and is given as follows:

ξ = σ
1

Bn

B

∑
i=1

n

∑
k=1

S[πθ(ok
i )], (3.5)

where S is the policy entropy and σ is the entropy coefficient. Maximising this term

within each actor’s policy update ensures that less frequently visited states are explored

[50].

Yu et al. [52] found that MAPPO achieves comparable maximum returns to var-

ious off-policy algorithms on discrete cooperative multi-agent environments. More-

over, Yu et al. [52] also found that MAPPO achieves a sample efficiency similar to

the off-policy algorithms they compared against, which is remarkable considering that

usually on-policy algorithms are far less sample efficient [52]. In their benchmarking

paper, Papoudakis et al. [35] obtain results that support these findings, concluding that

MAPPO’s main advantage over similar algorithms (such as MAA2C) is its combina-

tion of on-policy optimisation with its surrogate objective function.

As mentioned, MAPPO conditions the critic on the joint state, in contrast to MAD-

DPG, which conditions its critic on both the joint state and joint action. Hence,

MAPPO can not provide a clear comparison to MADDPG for determining the impact

of Gumbel-Softmax. Therefore, our proposed algorithm differs from MAPPO because

it will instead condition the critic on both the joint state and joint action to determine

Gumbel-Softmax’s impact on MADDPG within discrete action environments [26].

3.2.4 Counterfactural Multi-Agent (COMA)

Foerster et al. [13] present the COMA algorithm to improve decentralised policy gra-

dient estimates under a centralised critic. In order to achieve this, the authors apply

a baseline to the policy update inspired by difference rewards [51]. We now detail

COMA and discuss its performance under several metrics as measured by Foerster

et al. [13] and compare it to the measurements made by Papoudakis et al. [35] in their

MARL benchmarking paper, and those made within a paper which proposes improve-

ments to COMA [47].

Similarly to MADDPG, COMA employs a centralised critic conditioned on the

joint observation and joint action while preserving independent policies for each agent

[26, 13]. However, unlike MADDPG, the COMA algorithm utilises a counterfactual

baseline on the actors’ policy updates, enabling credit assignment per agent [13]—the
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policy update can then track how much the individual agent’s actions contributed to the

global reward. Furthermore, the paper’s authors propose a specific model architecture

that uses a single central critic for all agents to enable a more efficient calculation of the

counterfactual baseline [13]. The counterfactual baseline proposed by Foerster et al.

[13] for each agent i is as follows:

Ai(x,u) = Q(x,u)−∑
a∗i

πi(a∗i | oi)Q(x,(u−i,a∗i )) (3.6)

where u is the joint action, u−i is the joint action not including the action of agent i,

and ui
∗ is a possible action for agent i. The objective function for proposed by Foerster

et al. [13] can then be given as:

∇θiJ(θi) = Es∼pπππ,ai∼πi[∇θi logπi(ai | oi)Ai
w(x,u)] (3.7)

Foerster et al. [13] compared COMA to baselines (including MAA2C, MAPPO and

IA2C) on the StarCraft unit micromanagement environment and found that it success-

fully outperforms them in terms of the average number of game wins during training.

However, their findings were contradicted by those in the benchmarking paper [35],

where COMA was found to perform worse in terms of average and maximum returns

on a wide variety of multi-agent environments, including in the SMAC environment

[36]. Furthermore, Vasilev et al. [47] also found that COMA performed poorly on the

SMAC tasks against several of the same baselines mentioned.

COMA does not answer the research questions we set out for this project because

of its many differences with MADDPG. Despite being a CTDE algorithm, COMA’s

use of a single centralised critic prevents it from learning on competitive environments.

Our proposed algorithm will utilise the MAAC method, therefore making it a far more

useful comparison to MADDPG for answering our questions around Gumbel-Softmax.
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Methods

The project’s primary objective is to compare a stochastic RL algorithm that utilises

the MAAC framework against MADDPG to experimentally determine whether the

reparametrisation bias introduced by Gumbel-Softmax [21, 35], required by MAD-

DPG to learn on discrete action spaces [26], impacts its ‘performance’. As detailed

later in this chapter, the ‘performance’ of each algorithm will be measured using sev-

eral metrics, including the maximum evaluation returns, average evaluation returns,

and average compute time. Furthermore, we will test for these metrics on multi-agent

environments with different properties (such as sparse rewards vs non-sparse rewards,

cooperation vs non-cooperation, different levels of complexity) to discover whether

the use of a deterministic policy with a Gumbel-Softmax has any trade-offs in discrete

action spaces [26, 24]. Or if stochastic MAAC algorithms, which do not require a

Gumbel-Softmax, always perform better in terms of the metrics we are measuring.

4.1 Baseline Algorithms

4.1.1 IA2C

The importance of employing IA2C as a baseline is two-fold. Firstly, it will allow

us to determine where the use of centralised learning becomes advantageous over de-

centralised learning on a given task. Secondly, it provides a clear data point on how

on-policy algorithms should perform, which is essential because the algorithm we in-

troduce is on-policy.

18
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4.1.2 MADDPG

Comparing MADDPG with our proposed algorithm is essential to the project. It

will provide the experimental data required to answer our research question around

whether Gumbel-Softmax impedes the performance, as measured under our metrics, of

MAADPG on discrete action environments. Furthermore, using MADDPG as a base-

line will also provide insights into off-policy vs on-policy learning with the MAAC

method since our proposed algorithm is on-policy.

4.1.3 MAPPO

With the MAPPO baseline, it will be possible to determine whether our proposed al-

gorithm performs at or above a level already present in the CTDE MARL literature

[52, 35]. Moreover, MAPPO will also enable a direct comparison between joint state

value critics and joint state-action value critics, a property not represented in the other

baselines.

4.2 Proposed Algorithm

4.2.1 Multi-Agent PPO Q-learning (MAPPOQ)

We propose MAPPOQ to compare against MADDPG and empirically determine the

impact of the reparametrisation bias introduced by its Gumbel-Softmax [35]. Below

we outline our proposed algorithm in further detail.

MAPPOQ is an on-policy and stochastic MAAC algorithm. Therefore, like MAD-

DPG, actors in MAPPOQ learn from their local observation histories while critics are

conditioned on the joint observations and actions; each critic within MAPPOQ approx-

imates the joint state-action value function. Additionally, MAPPOQ applies various

techniques from MADDPG and IA2C. For example, target networks are implemented

to help stabilise the critic’s update during training, as seen in MADDPG. Furthermore,

MAPPOQ trains agents in parallel environments, like IA2C, to ensure that i.i.d samples

are collected despite the algorithm being on-policy [31].

In contrast to MADDPG and IA2C, MAPPOQ minimises the PPO objective func-

tion. We expect PPO to allow MAPPOQ to be an appropriate comparison to the off-

policy MADDPG baseline when compared for sample efficiency, given the reuse of

initial on-policy samples to update the PPO surrogate objective function [38, 52]. Also
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in contrast to MADDPG and IA2C, MAPPOQ employs RNNs. We decided upon this

to remain consistent with the MAPPO implementation. Below we provide the pseudo-

code for our proposed MAPPOQ algorithm.

Algorithm 2 MAPPOQ algorithm

1: Initialise policy and critic weights, θπ and θQ, using Orthogonal initialisation [20]

2: Initialise target networks π′ and Q′ with weights θπ′ ← θπ,θQ′ ← θQ

3: Set learning rates απ,αQ > 0

4: while step≤ stepmax do
5: Set data buffer D = {}
6: for j = 1 to batch size do
7: T = [] empty list

8: Initialise h(1)0,π . . . ,h
(n)
0,π, h(1)0,Q . . . ,h(n)0,Q RNN states

9: for t = 1 to T do
10: ut = [] empty list

11: for all agents i do
12: p(i)t ,h(i)t,π = π(o(i)t ,h(i)t−1,π | θπ

i )

13: u(i)t ∼ p(i)t

14: Append u(i)t to list ut

15: end for
16: for all agents i do
17: v(i)t ,h(i)t,Q = Q(xt,ut,h

(i)
t−1,Q | θ

Q
i )

18: end for
19: Execute actions ut, observe rt ,ot+1,xt+1

20: T += [ot,xt,ht,πππ,ht,Q,ut,rt ,ot+1,xt+1]

21: end for
22: Predict next actions uT+1 ∼ pT+1

23: Compute discounted returns R on T
24: Divide trajectory T into chunks of length L and append to D

25: end for
26: Adam update θQ on L(θQ) and θπ on L(θπ) with data D

27: if step = update f req then
28: Update target networks θπ′ ← θπ,θQ′ ← θQ

29: end if
30: end while
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where L(θQ
i ) represents the critic loss for each agent and is given by:

L(θQ
i ) =

1
T ∑

t

(
Rt−Q

(
xt,ut,h

(i)
t−1,Q | θ

Q
i

))2
, (4.1)

where Rt is the discounted returns for timestep t. L(θπ
i ) is the actor loss for each agent

and is given by:

L(θπ
i ) =

1
T ∑

t
min

(
rθ,tRt ,clip(rθ,t ,1− ε,1+ ε)Rt

)
+ξ, (4.2)

where rθ,i is the PPO importance sample between the old and new policies shown after

equation (3.4), and ξ is the policy entropy term similar to equation (3.5).

4.3 Environments

4.3.1 Level-Based Foraging (LBF)

LBF is a multi-agent grid-world environment where agents collect randomly placed

apples to receive rewards [1, 9]. Agents and apples are assigned levels. Where an

agent’s level is less than or equal to the level of an apple, they may collect it. Otherwise,

enough agents must cooperate such that their combined levels are greater than or equal

to the level of the apple.

The LBF environment allows for varying levels of complexity (such as smaller or

larger grids, fewer or more agents, fewer or more apples, full or partial observability),

enabling experiments to stretch the algorithms and provide a great range of insights

into their abilities; including how they handle the complexities mentioned and how

they handle cooperation when required. Furthermore, the LBF environment has sparse

rewards, which can cause issues with exploration during learning [48]. Thus, it pro-

vides the opportunity to examine the algorithms under this particular constraint.

Accordingly, we run experiments across seven LBF environment settings, where

we vary the observability, grid size, number of agents, and number of apples. These en-

vironments are given by: (1): 8x8-2p-2s; (2) 2s-8x8-2p-2f; (3) 8x8-2p-3f; (4) 10x10-

2p-2f; (5) 2s-10x10-2p-2f; (6) 10x10-2p-3f; (7) 15x15-3p-4f. Where the 2s refers

to partial observability. The following values then represent the grid size, number of

agents, and number of apples respectively.

These LBF experiments were selected as they provide an increasing range of dif-

ficulties. Furthermore, as the difficulties increase, we expect that the algorithms will

be required to learn more complex cooperative behaviour between agents; typically
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thought to favour CTDE algorithms and therefore provides the perfect setting to mea-

sure differences between MADDPG and our proposed algorithm.

4.3.2 Multi-Agent Particle Environments (MPEs)

MPEs consists of different tasks involving multiple agents and landmarks [32, 26].

In some of the tasks, agents must cooperate to attain rewards (Spread and Speaker

Listener), and in others, agents must compete to achieve rewards (tag and adversary).

The tasks set out in MPEs require high levels of cooperation amongst agents, requiring

algorithms to learn complex and coordinated policies [35, 26].

An advantage of using MPEs is that they provide a perfect comparison to the origi-

nal MAADPG paper because the authors experimented on MPE tasks exclusively [26].

Another advantage comes from the high levels of coordination required to solve the

tasks. Previous research has demonstrated that this requirement allows CTDE algo-

rithms to outperform their independent counterparts [35, 26]. Thus, MPEs will enable

a clear benchmark for our proposed algorithm.

We report evaluation rewards on the following MPE tasks: (1) Speaker Listener (or

Cooperative communication), a task in which a stationary agent must communicate the

location of a target to a non-stationary agent, whose goal is to reach the said target; (2)

Spread (or Cooperative navigation), where agents are required to learn to keep close

to a set of landmarks while simultaneously avoiding collisions with the other agents

in the world.; (3) Tag (or Predator-prey), which involves three adversary agents and

one good agent. The good agent is faster and must avoid being hit by the adversarial

agents; Lastly, (4) Adversary (or Physical deception), a task involving two landmarks

(one a target and one not), two good agents who know where the target landmark is,

and one adversary who does not. All agents are rewarded for how close they are to the

target. However, the good agents are negatively rewarded if the adversary is close to

the target. Hence, the good agents must learn to deceive the adversary by splitting up

and covering both the target and non-target landmarks.

4.4 Performance Metrics

4.4.1 Maximum Returns

We report each algorithm’s highest average return value from the intermediary eval-

uation timesteps during training. The value reported will be the average across five
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random seeds from the timestep. A confidence interval of ninety-five per cent will also

be reported for each maximum return.

4.4.2 Average Returns

Averaging the values from each evaluation timestep during training provides a metric

that accounts for the convergence speed/sample efficiency and the maximum return

achieved. As with the maximum return metric, we average the mean evaluation across

five random seeds and report the ninety-five per cent confidence intervals around the

value.

4.4.3 Compute Time

For further insight, we also measure the wall-clock time taken by each algorithm to

complete training. This performance metric is necessary because a model may have

excellent sample efficiency and yet take far more time to train than other algorithms;

this is especially true when comparing on-policy and off-policy algorithms [35].

4.5 Evaluation Protocol

We train each algorithm for three million timesteps on the environments, evaluating

ten episodes every thirty-one thousand steps for a total of ninety-seven evaluations per

training run. We record the average evaluation rewards across five random seeds, along

with the standard deviation, for each evaluation step. Keeping the evaluation protocol

consistent in this way will help draw quick conclusions on our results, particularly the

average returns and compute time. As a side note, three million training timesteps were

chosen based on results found during hyperparameter tuning and those mentioned in

the benchmarking paper by Papoudakis et al. [35].

Furthermore, we report the ninety-five per cent confidence interval for each mean

value across the five seeds. To do this, we utilise the sample standard deviation and

the t-distribution. Reporting the ninety-five per cent confidence interval allows us to

assess the variance of each method easily.
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4.6 Hyperparameter Optimisation

If optimal hyperparameters were published, we typically utilised them (e.g. [35, 52]).

However, when no hyperparameter information was available, we performed a grid-

search on one task per environment, retaining the hyperparameters that lead to the best

results across each of our performance metrics.

4.7 Implementation Details

All experiments were conducted with the Microsoft Azure cloud computing service 1.

The machines used for evaluation were equipped with four virtual CPUs, 16GiB RAM,

and 32GiB temporary storage.

The software we developed made use of several publicly available PyTorch imple-

mentations of the Actor-Critic algorithms 2 and MADDPG 3.

4.8 Difficulties

Before arriving at the MAPPOQ algorithm we spent a significant amount of time at-

tempting to implement the MAAC method with the A2C algorithm. Unfortunately,

MAACQ suffers from poor sample efficiency, and gave little insight into the im-

pact of Gumbel-Softmax on MADDPG’s performance. Following this, we abandoned

MAACQ and implemented a more sample efficient algorithm, PPO [38].

1https://azure.microsoft.com
2https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
3https://github.com/shariqiqbal2810/maddpg-pytorch

https://azure.microsoft.com
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/shariqiqbal2810/maddpg-pytorch
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Figure 5.1: Visual plots from the seven LBF tasks.
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5.1 LBF

5.1.1 Maximum Returns

Table 5.1: Maximum evaluation returns and 95% confidence interval reported over five

training seeds for each algorithm on the LBF tasks. Returns in bold represent the

highest score for that task.

Task IA2C MADDPG MAPPO MAPPOQ

8x8-2p-2f 1.00±0.00 0.79±0.19 0.89±0.06 1.00±0.00

2s-8x8-2p-2f 1.00±0.00 0.81±0.16 0.87±0.07 1.00±0.00

8x8-2p-3f 1.00±0.00 0.76±0.11 0.82±0.02 0.87±0.22

10x10-2p-3f 1.00±0.00 0.62±0.12 0.82±0.12 0.45±0.08

2s-10x10-2p-3f 1.00±0.00 0.59±0.13 0.69±0.12 0.49±0.05

10x10-3p-3f 0.28±0.03 0.25±0.07 0.59±0.11 0.21±0.03

15x15-3p-4f 0.12±0.01 0.13±0.07 0.35±0.20 0.09±0.03

MAPPOQ achieved higher maximum returns than both MAPPO and MADDPG

within the eight-by-eight grids. Hence, the hypothesis that Gumbel-Softmax hinders

MADDPGs ability to approximate the optimal policy is supported. However, for tasks

with larger grid sizes, the maximum returns attained by MAPPOQ drops below those

of both MADDPG and MAPPO. We, therefore, infer that MAPPOQ does not handle

sparse reward tasks well compared to MADDPG and MAPPO since increased grid

sizes in LBF reduce the state vs reward ratio.

Interestingly, comparing results from the 10x10-2p-3f and the 2s-10x10-2p-3f tasks,

we find the maximum returns achieved by MAPPOQ are slightly higher in the latter.

It suggests that the centralised critic within MAPPOQ carries extra benefit in envi-

ronments where the actor only has partial observability over those where the actor

fully observes the environment. However, the evidence for this implication is unfortu-

nately weak, given that the confidence intervals between the two values heavily over-

lap. Moreover, the results do not provide indications that this applies more generally

to all CTDE algorithms, given that the returns of MADDPG and MAPPO both tend to

fall when the partial observability condition is applied.

Finally, observing the results for IA2C, we see that it achieved the highest maxi-

mum possible returns for LBF across all seeds in five of the seven tasks. Furthermore,

comparing its results with the other algorithms suggests that for the LBF tasks we

experimented on, CTDE has no advantage over complete decentralisation—this is all
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observed in the average return results that we discuss next. Therefore, the implication

is that CTDE methods do not provide the perfect solution to every MARL task. A

finding that has been found noted before by Lyu et al. [27]. In the discussion chapter,

we shall detail our hypothesis for why this is the case.

5.1.2 Average Returns

Table 5.2: Average evaluation returns and 95% confidence interval reported over five

training seeds for each algorithm on the LBF tasks. Returns in bold represent the

highest score for that task.

Task IA2C MADDPG MAPPO MAPPOQ

8x8-2p-2f 0.96±0.06 0.48±0.16 0.71±0.15 0.70±0.16

2s-8x8-2p-2f 0.97±0.06 0.57±0.13 0.68±0.14 0.68±0.22

8x8-2p-3f 0.93±0.07 0.50±0.16 0.60±0.16 0.49±0.09

10x10-2p-3f 0.79±0.08 0.31±0.13 0.56±0.15 0.33±0.06

2s-10x10-2p-3f 0.83±0.15 0.38±0.14 0.48±0.13 0.36±0.07

10x10-3p-3f 0.21±0.05 0.12±0.07 0.34±0.15 0.17±0.05

15x15-3p-4f 0.07±0.02 0.04±0.03 0.13±0.11 0.07±0.02

Similar patterns found with the maximum returns also appear in the average re-

turns. Additionally, the average return metric enables inferences on the algorithms’

sample efficiencies; we now examine these details.

The average returns on LBF show that MAPPOQ’s learning rate falls when increas-

ing the grid sizes, supporting the previous suggestion that MAPPOQ struggles to learn

optimal policies in sparsely rewarded tasks. Additionally, MAPPOQ achieved higher

average returns than MADDPG within the smaller grid sizes, supporting the hypothesis

that Gumbel-Softmax impedes MADDPG in discrete action space environments.

Analysing the results between the partially observable states and their fully observ-

able counterparts, we notice that the seeming effect of improved performance men-

tioned in the maximum returns section has vanished. Hence, the evidence for the

previously mentioned implication is not supported under this metric.

The implication that CTDE algorithms are unnecessary for the LBF tasks we mea-

sured remains firmly supported, as IA2C outperforms all the CTDE algorithms for

average returns. Furthermore, both IA2C and MAPPOQ use stochastic policies, which

are advantageous in sparse reward environments given the inherent exploration from
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sampling the stochastic policy. However, despite MAPPOQ sharing this feature, it did

not achieve the same average returns as IA2C.

Lastly, the sample efficiency of MAPPOQ is comparable to MADDPG. We hy-

pothesised that this would be the case, given that our algorithm uses the PPO surrogate

objective function, a method that was shown to improve on-policy sample efficiency

by Yu et al. [52].

5.1.3 Compute Time

Table 5.3: Average wall-clock time in seconds and 95% confidence interval reported

over five training seeds for each algorithm on the LBF tasks. Times in bold represent

the fastest time for that task.

Task IA2C MADDPG MAPPO MAPPOQ

8x8-2p-2f 401.12±2.02 3577.41±21.63 6050.91±139.15 4308.98±80.36

2s-8x8-2p-2f 401.12±2.02 3611.52±24.26 5735.52±163.87 4045.07±20.63

8x8-2p-3f 393.63±0.48 3506.64±10.23 5770.55±50.03 4301.53±99.07

10x10-2p-3f 398.86±0.74 4580.40±161.52 5774.35±39.17 5689.34±322.74

2s-10x10-2p-3f 390.31±7.66 3574.32±46.64 5788.85±71.35 5731.40±252.07

10x10-3p-3f 550.35±3.31 6780.87±1890.47 8543.86±37.45 7839.43±494.56

15x15-3p-4f 543.06±3.98 8039.77±175.46 8605.00±55.80 8302.61±368.24

All four algorithms’ compute time increased as the number of agents increased.

Additionally, IA2C was far faster than the CTDE algorithms; this suggests that CTDE

inclusion of extra information within the critic slows down the updates. However,

since the PPO algorithms iterate many times over their update function, it is expected

that these algorithms would be slower. Lastly, MAPPOQ achieved similar times to

MADDPG. Therefore, we infer that MAAC implemented with the stochastic policy of

PPO is equal in computational cost to MAAC implemented with DDPG and Gumbel-

Softmax.
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5.2 MPEs

Figure 5.2: Visual plots from the MPE tasks.

5.2.1 Maximum Returns

Table 5.4: Maximum evaluation returns and 95% confidence interval reported over five

training seeds for each algorithm on the MPE tasks. Returns in bold represent the

highest score for that task.

Task IA2C MADDPG MAPPO MAPPOQ

Speaker Listener −33.89±2.60 −16.17±6.78 −16.93±5.81 −20.44±8.30

Spread −226.25±5.88 −142.40±6.26 −148.04±10.81 −220.15±19.97

Adversary −0.21±1.72 4.81±2.00 −1.94±1.68 −3.01±1.72

Tag 27.30±2.49 23.36±9.66 10.23±3.37 5.27±3.22

Within Speaker listener and Spread, the two cooperative MPE tasks, MAPPOQ,

achieved lower returns than MAPPO and MADDPG. Therefore, suggesting that the

algorithm could not learn as successful a policy compared to the other two algorithms.
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However, despite not learning as well as MADDPG and MAPPO, our proposed algo-

rithm successfully attained a much higher score than IA2C. As a fully decentralised

algorithm, it is not surprising that IA2C fails to learn the cooperative behaviour neces-

sary for solving the Speaker Listener task given the lack of consistent gradient signal

[26]. It suggests that MAPPOQ’s centralised critic enables it to learn the required co-

operative behaviour, as we would hope to find. On the other hand, MAPPOQ suffered

from a far lower return for the spread environment and displayed the highest variance

out of the four algorithms. Given that Spread involves three agents, compared to the

two within the Speaker Listener environment, it suggests that MAPPOQ struggles to

learn in environments with many agents.

Continuing to the competitive environments, we observe that MAPPOQ attained

the lowest score for both tasks out of all the algorithms. However, this does not sug-

gest that MAPPOQ struggled with these environments because successfully solving

the competitive tasks involves learning a stable policy where the agents find equilib-

rium. Hence, a successful learning curve within the competitive tasks should show

stable learning behaviour without sudden significant increases or decreases in returns.

Therefore, we wait until the average returns section before commenting on the perfor-

mances observed within these competitive environments.

5.2.2 Average Returns

Table 5.5: Average evaluation return and 95% confidence interval reported over five

training seeds for each algorithm on the MPE tasks. Returns in bold represent the

highest score for that task.

Task IA2C MADDPG MAPPO MAPPOQ

Speaker Listener −41.50±7.89 −22.95±12.74 −31.34±12.47 −120.94±114.06

Spread −229.84±4.10 −151.93±8.82 −177.37±6.37 −274.52±53.4

Adversary −3.97±3.71 −2.43±5.88 −4.09±2.35 −7.20±4.60

Tag 2.10±3.45 −0.90±14.80 4.08±2.65 1.15±2.65

MAPPOQ exhibited the lowest average returns out of all the algorithms in three

of the four MPE scenarios. It also displayed very high levels of variance across its

five training seeds in both the Speaker Listener and Spread tasks, especially when

compared to the baseline algorithms, whom each achieved an average return that was

consistently close to their respective maximums.
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Interestingly, MAPPOQ appears to have performed far better in the competitive

environments of Adversary and Tag, a finding that is perhaps consistent with its more

robust performance on the LBF tasks. It suggests that when the agents share the same

rewards, MAPPOQ struggles to efficiently learn effective behaviours, requiring many

more training samples before converging, given how far its average returns are from

its maximum seen above.

Indeed, from the low averages, we infer that the sample efficiency of MAPPOQ

is much lower than the other algorithms’ in the cooperative environments. Further-

more, we speculate that the variance observed is linked to the centralised critics’ value

estimates, which we will discuss more in the following chapter.

5.2.3 Compute Time

Table 5.6: Average wall-clock time in seconds and 95% confidence interval reported

over five training seeds for each algorithm on the MPE tasks. Times in bold represent

the fastest time for that task.

Task IA2C MADDPG MAPPO MAPPOQ

Speaker Listener 474.75±0.39 1634.39±12.74 2537.44±54.80 5307.20±697.47

Spread 707.42±2.51 3251.93±483.82 5461.52±800.86 10799.54±697.28

Adversary 644.83±4.47 2712.43±50.88 4813.50±84.58 5690.84±161.34

Tag 893.57±1.60 4759.37±614.80 7396.06±1145.70 9640.53±613.00

As was found within the LBF tasks, the computational time increased with the

number of agents in the environment. Additionally, we again observe that the CTDE

algorithms are far slower than the fully decentralised IA2C, suggesting that including

the additional information in the critics increases the cost of the training process.

Unlike the LBF tasks, the MPEs provides a distinct comparison between coop-

eration vs competition. The results support our speculation; compared to the other

algorithms, MAPPOQ displays worse performance on the cooperative tasks than the

competitive ones. For example, in Speaker Listener, MAPPOQ took more than double

the time to complete training than the other algorithms.
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Discussion

6.1 Evaluation of Results

The goal of the project was to implement at least one stochastic RL algorithm with

the MAAC method and compare it empirically against MADDPG on different discrete

MARL environments. Motivating our goal was the suggestion from previous work [35]

that Gumbel-Softmax, used by MADDPG to maintain its differentiability in discrete

action spaces, causes a reparameterisation bias that worsens its performance in terms

of both maximum and average returns. Therefore, comparing our alternate MAAC al-

gorithm that does not require a Gumbel-Softmax to MADDPG would test their claims

and discover the full performance implications of the reparametrisation bias.

Accordingly, within our project, we proposed MAPPOQ, an algorithm that em-

ploys a stochastic policy while also being a MAAC method. Furthermore, MAPPOQ

utilised the PPO surrogate objective function, a feature that was included to account for

the differences in sampling efficiencies between on-policy and off-policy algorithms

(e.g. [35]). We then outlined several LBF and MPE tasks that would enable various

comparisons to be drawn between MAPPOQ and the baseline algorithms across dif-

ferent environmental properties, such as sparsity of rewards, cooperation, competition,

and observability.

Our results provided evidence to suggest that MADDPG does indeed suffer from a

hindered performance under the metrics we measured within some of the discrete envi-

ronments. However, and perhaps more interestingly, the results also pointed to a more

nuanced trade-off for the MAAC method; despite its consequences for performance,

Gumbel-Softmax allows deterministic policies to be used in discrete action spaces.

Something that should not be understated because, as our results showed, stochastic

32
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policies combined with the MAAC method often exhibit high variances. This result

is also supported by the work of Lyu et al. [27], where the authors proved that CTDE

suffers from higher variances than fully decentralised methods.

We hypothesise that the issues faced by MAPPOQ are general to all stochastic

MAAC algorithms. Our justification for this comes down to the stochasticity of the

action sampling. When each actor samples its following action, each action will in-

clude some associated variance given the probability distribution from which it was

sampled. Therefore, combining these actions then combines the associated variances.

This hypothesis is supported by results from other CTDE algorithms. For example, the

COMA algorithm which has been shown to perform poorly on many multi-agent tasks

[47, 35].

Moreover, given that in MAAC, the policy gradient estimate uses the critic’s value

judgement, we arrive at the issue for stochastic MAAC methods. The policies are

estimated with a highly variable value from timestep to timestep, causing, as we saw

in our results, highly variant policies that require many samples to begin to solve tasks.

Furthermore, increasing the number of agents within the task would only increase the

variance in the joint action.

Something we found true, especially in the Spread task where MAPPOQ achieved

lower average returns than all baseline algorithms and displayed very high levels of

variance across the five random seeds.

6.2 Project Limitations

Our research was limited in several ways; we discuss these limitations to provide a

more accurate context around our findings. Additionally, we also believe that outlin-

ing the challenges faced by the project will help improve the current state of MARL

research.

Firstly, our experiments focused on two MARL environments. Further insights

could be found between our proposed algorithm and MADDPG by experimenting on

a more diverse range of MARL tasks. For example, SMAC and multi-agent robot

warehouse (RWARE) require more complex behaviour to be solved than both LBF

and MPEs [36, 35].

Secondly, it is known that differences in the implementations of algorithms can

cause a difference in observed performances. Therefore, our comparisons between the

baselines may be limited because our implementations were not standardised. Lack of
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standardised implementations for MARL algorithms is a known problem that causes

differences in observed results [3], however work is being carried out to fix this issue

and we hope that this gap can continue to be closed [35].

Thirdly, we performed a grid search over a pre-selected range of hyperparameters.

Further investigation of hyperparameters could make use of either a random search

over a wider range of hyperparameters or Bayesian optimisation, two methods shown

to both perform more efficiently than grid search for optimal hyperparameter discovery

[6, 41].

Lastly, our work compared an on-policy algorithm to the off-policy MADDPG.

Off-policy algorithms are more sample efficient and often require more compute time

than their on-policy counterparts. Thus, while utilising the PPO surrogate objective

function within MAPPOQ did account for differences in sample efficiency, future in-

vestigations may want to compare an off-policy stochastic MAAC algorithm against

MADDPG.
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Conclusions

In conclusion, we have proposed an alternative MAAC algorithm named MAPPOQ

and compared it empirically against MADDPG on a diverse range of discrete-action

multi-agent tasks. While MAPPOQ did not outperform MADDPG across all tasks, our

findings did answer our research questions.

Our aim for the project was to investigate the hypothesis that Gumbel-Softmax

hinders MADDPG’s performance. Additionally, we hoped to obtain an algorithm that

would outperform MADDPG or provide similar results with less required hyperpa-

rameter tuning. Our results showed that the use of a Gumble-Softmax does indeed

hinder MADDPG on discrete-action spaces. However, perhaps more surprisingly, we

discovered that MADDPG outperformed its stochastic alternative across many tasks,

particularly those requiring more cooperation between agents. Thus, we speculate that

a more nuanced trade-off exists between implementing MAAC with DDPG and imple-

menting it with a stochastic policy gradient algorithm such as PPO.

We leave it to future work to investigate this trade-off further; where is the exact

limit that DDPG becomes preferable over a stochastic algorithm implementation of

MAAC, for example? Future work may also investigate methods for reducing the

reparameterisation bias caused by Gumbel-Softmax or find ways to remove its use

altogether while upholding deterministic action selection.
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[22] Emilio Jorge, Mikael Kågebäck, Fredrik D Johansson, and Emil Gustavsson.

Learning to play guess who? and inventing a grounded language as a conse-

quence. arXiv preprint arXiv:1611.03218, 2016.

[23] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in

neural information processing systems, pages 1008–1014, 2000.

[24] T. Lillicrap, Jonathan J. Hunt, A. Pritzel, N. Heess, T. Erez, Yuval Tassa, D. Sil-

ver, and Daan Wierstra. Continuous control with deep reinforcement learning.

CoRR, abs/1509.02971, 2016.

[25] Michael L Littman. Markov games as a framework for multi-agent reinforcement

learning. In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

[26] Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. Multi-agent actor-critic for mixed cooperative-competitive environ-

ments. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 30. Curran Associates, Inc., 2017.



Bibliography 39

[27] Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. Contrast-

ing Centralized and Decentralized Critics in Multi-Agent Reinforcement Learn-

ing, page 844–852. International Foundation for Autonomous Agents and Multi-

Agent Systems, 2021.

[28] Andrei Andreevich Markov. The theory of algorithms. Trudy Matematicheskogo

Instituta Imeni VA Steklova, 42:3–375, 1954.

[29] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent

reinforcement learners in cooperative markov games: a survey regarding coordi-

nation problems. Knowledge Engineering Review, 27(1):1–31, 2012.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learn-

ing. nature, 518(7540):529–533, 2015.

[31] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine

learning, pages 1928–1937. PMLR, 2016.

[32] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional lan-

guage in multi-agent populations. arXiv preprint arXiv:1703.04908, 2017.
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