
Reinforcement Learning with

Function Approximation in

Continuing Tasks: Discounted

Return or Average Reward?

Lucas Descause

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2019

Abstract

Discounted returns, a common metric used in Reinforcement Learning to estimate the

value of a state or action, has been claimed to be ill-defined for continuing tasks us-

ing value function approximation [11]. Instead, average rewards have been proposed

as an alternative [11, 9]. We conduct an empirical comparison of discounted returns

and average rewards on three different continuing tasks using various value function

approximation methods. Results show a clear performance advantage for average re-

wards. Through further experiments we show that this advantage may not be caused by

partial observability, as hypothesized by the claims against discounted returns [11, 9].

Instead, we show that this advantage may be due to average reward values requiring a

simpler function to estimate than discounted returns.

i

Acknowledgements

I would like to thank my supervisor, Stefano Albrecht, for his support and guidance

throughout this project.

ii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Episodic vs. Continuing Tasks . 3

2.2 Discounted Returns and Average Rewards 3

2.3 Value Estimation . 4

2.3.1 Q-Learning . 5

2.3.2 SARSA . 5

2.4 Exploration . 6

2.5 Value Function Approximation (VFA) 6

2.6 Asynchronous Methods . 7

2.7 Problems with Discounted Returns 7

2.7.1 General Problems . 7

2.7.2 Problems with VFA . 8

2.8 Related Work . 9

3 Empirical comparison: Methodology 10
3.1 Tasks . 10

3.1.1 Task 1 . 10

3.1.2 Task 2 . 11

3.1.3 Task 3 . 12

3.2 Algorithms . 13

3.3 Value Function Approximation . 13

3.4 Evaluation . 14

3.4.1 Parameter Optimization . 14

3.4.2 Evaluating Policies . 14

3.4.3 Comparison of Discounted Returns and Average Rewards . . 15

iii

4 Empirical comparison: Results 16
4.1 VFA Complexity . 16

4.2 On-policy vs Off-policy . 17

5 POMDP: Discounted Returns or Average Rewards 20
5.1 Methodology . 20

5.2 Results . 22

6 VFA Complexity: Discounted Returns vs. Average Rewards 23
6.1 Hypothesis . 23

6.2 Methodology . 24

6.3 Results . 25

7 Conclusions 26

Bibliography 27

A Task 2 Parameters [6] 29

B VFA Experiments: Random Search 30

iv

Chapter 1

Introduction

Reinforcement Learning aims to solve decision-making problems using only trial and

error experience. An artificial agent observes the problem environment and must

choose which action to perform to maximize its rewards. Maximizing immediate re-

wards does not always result in an optimal policy as such behavior could lead away

from more distant but greater rewards. It is, therefore, necessary to define which re-

wards to maximize. Discounted returns [11] have been most commonly used to mea-

sure the immediate and future returns caused by an action. This measure considers both

recent and distant rewards and assigns different weights to rewards based on recency.

Typically, a higher weight is given to recent rewards.

Value Function Approximation (VFA), using models such as neural networks, can

be used to estimate the returns of possible actions given the state of the environment.

This allows RL to be used with more complex problems containing large state spaces

by generalizing the learned policy to unseen states. It has been suggested [11], that

discounted returns are ill-defined when used with VFA in tasks with no end state where

the decision problem continues endlessly. We refer to such tasks as continuing tasks.

Average rewards, a metric which weights recent and distant rewards equally, has been

proposed to replace discounted returns for continuing tasks using VFA.

There has been theoretical work [9, 11] arguing that discounted returns are ill-

defined when using VFA in continuing tasks. To our knowledge, however, the practical

difference between discounted returns and average rewards in this setting has not been

investigated. We conduct an empirical comparison of both methods across different

continuing tasks and different VFA to verify whether depreciating discounted returns

in this setting is justified. We limit our experiments to action-value methods and use

both Asynchronous Q-learning [7] and SARSA [7] for our comparison. We justify

1

Chapter 1. Introduction 2

the use of Asynchronous Methods as they have been shown to obtain state-of-the-art

results on common benchmarks [7]. For VFA both linear models and neural networks

are used as they are the most commonly used methods of function approximation in

RL [11].

Furthermore, we implemented three continuing tasks of various complexity for our

experiments. Open-source RL environments are widely available for episodic tasks but

to our knowledge, few or no continuing tasks are available. The implemented tasks are

made available publicly to facilitate research of continuing RL tasks.

To evaluate the different algorithms, we freeze the policy during and after training

and measure the average reward obtained by the greedy policy. The experimental

results suggest that average rewards outperform discounted returns for simple VFA

(such as a linear model) but that both obtain similar performance when VFA is complex

enough (for example a neural network with sufficient depth and number of hidden

units). We hypothesize that simple VFA causes lower observability, as it causes more

state aggregation, which is in turn responsible for the lower performance of discounted

returns. We design further experiments using Partially Observable Markov Decision

Processes (POMDPs) [9] to confirm this, however, results seem to indicate that partial

observability is not the cause of the performance difference between discounted returns

and average rewards. Finally, we investigate whether discounted return values require

a more complex function to estimate than average reward values.

The report is structured as follows: Ch. 2 provides the necessary background and

related work. Ch. 3 introduces the methodology for the empirical comparison between

discounted returns and average rewards. The results and analysis of the comparison

are presented in Ch. 4. In Ch. 5 we investigate through further experiments whether

partial observability is the cause of the performance difference between discounted

returns and average rewards. In Ch. 6, we investigate whether average rewards are

easier to learn than discounted returns. Finally, Ch. 7 concludes our analysis.

Chapter 2

Background

RL consists of an agent learning a policy π that maximizes rewards using experience

gathered by interacting with an environment. Environments are modeled by a Markov

Decision Process (MDP) defined by a set S of states, a set A of actions, the transition

probabilities P(St+1|At ,St) and a reward function r(St ,At). At each time step, the agent

observes the current state St , performs action At , moves to a new state St+1 and obtains

a reward Rt+1. Note that the environment follows a Markov assumption meaning that

the transition probabilities and rewards depend only on the current state and action.

Consequently, the agent only requires to observe the current state to choose an action.

The aim of Reinforcement Learning is to find an optimal policy defined by the

mapping State→ Action that maximizes the rewards obtained by the agent. The back-

ground provided in this section is mostly issued from Sutton and Barto [11].

2.1 Episodic vs. Continuing Tasks

RL tasks can be either episodic or continuing. Episodic tasks are defined by any task

with an end state. This includes many games such as Chess or Pac-Man, as in both,

the game can end when the player loses or wins. Continuing tasks do not contain any

end states and can continue indefinitely. This includes many business processes as a

business continues to run indefinitely and has no end or goal state.

2.2 Discounted Returns and Average Rewards

Both discounted returns and average rewards, aim to quantify the return (present and

future rewards) obtained by the agent. We define Gt as the returns obtained after time

3

Chapter 2. Background 4

step t. A simple definition of returns would be to sum all future rewards, however

we would end up with an infinite sum when the task has no end state. To avoid this

discounted returns define the return as the sum of discounted rewards:

Gt =
T

∑
k=0

γ
kRt+k+1 defined recursively as: Gt = Rt + γGt+1

where T = ∞ in the continuing case. The discount factor 0 < γ < 1 is necessary to

ensure that the sum converges to a finite value.

Average rewards, on the other hand, define Gt as the sum of the differences between

the rewards and the average rewards:

Gt =
T

∑
k=0

(Rt+k+1− r(π)) defined recursively as: Gt = (Rt− r(π))+Gt+1

where r(π) is equal to the average reward obtained by policy π.

2.3 Value Estimation

The value of a state or action is defined as the expected return obtained from that state

or action. We define:

• Qπ(St ,At) = E[Gt | St ,At] the value of taking action a while in state s when

following a policy π.

• Vπ(St) = E[Gt | St] as the value of being in state s when following a policy π.

If we can perfectly estimate Qπ(St ,At) we can greedily choose the action with maxi-

mum value for the current state to obtain an optimal policy. We describe two methods

to estimate these action-values, Q-Learning [11] and SARSA [11]. For both methods

we use bootstrapping to estimate Qπ(St ,At) using:

Qπ(St ,At) = E
[

Gt | St ,At

]
= E

[
Rt + γGt+1 | St ,At

]
Additionally, for both methods the mean is estimated using an incremental weighted

mean µk = µk−1 +α(xk− µk−1) where µk is the mean estimate at step k and xk is the

kth observation. High values of α can be used to give a higher weight to recent obser-

vations. Q-Learning and SARSA differ in their estimate of Gt+1.

Chapter 2. Background 5

2.3.1 Q-Learning

Discounted Returns
We estimate Gt+1 by maxa Q(St+1,a): the expected return at state St+1 assuming we

follow a greedy policy. Additionally, a weighted iterative mean is used to approximate

the expected value of the returns. This leads to the following recursive update rule to

estimate Q(St ,At).

Q(St ,At)← Q(St ,At)+α [Rt+1 + γmax
a

Q(St+1,a)−Q(St ,At)]︸ ︷︷ ︸
δ

where δ represents the error between the new and previous estimate. Additionally, α

can be interpreted as the learning rate.

Average Rewards
Average rewards differs from discounted returns only in the definition of the returns

which leads to the following update rule for average rewards:

Q(St ,At)← Q(St ,At)+α [(Rt+1− r(π))+max
a

Q(St+1,a)−Q(St ,At)]︸ ︷︷ ︸
δ

r(π) is defined as the incremental average of the returns and is updated every step using

r(π)← r(π)+βδ where a high β gives a higher weight to recent returns in the average.

2.3.2 SARSA

SARSA differs from Q-Learning only in the estimation of Gt+1. We estimate Gt+1

with Qπ(St+1,At+1), the expected return at state St+1 assuming we follow policy π.

This leads to the following update rules:

Discounted Returns

Q(St ,At)← Q(St ,At)+α [Rt+1 + γQ(St+1,At+1)−Q(St ,At)]︸ ︷︷ ︸
δ

Average Rewards

Q(St ,At)← Q(St ,At)+α [(Rt+1− r(π))+Q(St+1,At+1)−Q(St ,At)]︸ ︷︷ ︸
δ

Chapter 2. Background 6

2.4 Exploration

An optimal policy chooses the action with maximum value for each state. The action-

values are, however, initially unknown. It is, therefore, necessary to explore different

states and actions to evaluate their values. On the other hand, it is also necessary to

exploit the agent’s current experience and value estimations in order to obtain rewards

and gradually improve the policy. This is known as the trade-off between exploration

and exploitation.

It is common to use ε-greedy policies [11] to introduce exploration. An ε-greedy

policy chooses the action with maximum value with probability 1− ε and a random

action with probability ε. It is common to initialise ε = 1 and to anneal it to a low

value during training. This allows for a large amount of exploration at the beginning

of training but later focuses exploration on more relevant states and actions.

2.5 Value Function Approximation (VFA)

The update rules given in the previous section are used for tabular methods: the action

value Q(St ,At) is stored for every state and action encountered. When the state space

is large it can be difficult to explore the entire space and to store every value. Addi-

tionally, tabular methods do not allow to generalize the policy to unseen states. VFA

can be used to learn a function that approximates Q(St ,At) and allows to generalize

to unseen states. The function uses a feature vector of the current state as input and

outputs the value of each action for that state. A differentiable function with weights

w is typically used as it allows the use of gradient methods.

Instead of directly updating Q(St ,At) like in the tabular case, we now update w by

performing gradient descent to minimize the error, 1
2δ2 (we define δ in Section 2.3):

w← w−α
∂

1
2δ2

∂w
= w+αδ∇Q(St ,At ,w)

Note that we only differentiate the current estimate Q(St ,At ,w) and not the target (Rt +

maxa Q(St+1,a) in the case of discounted Q-learning). For this reason, these methods

are referred to as semi-gradient methods [11].

Chapter 2. Background 7

2.6 Asynchronous Methods

Some problems arise when combining RL with VFA. Mnih et al. [7] propose Asyn-

chronous Methods to address these problems and to combine RL and neural networks

VFA successfully. The first problem arises due to the approximation of a moving target

(Rt+1 + γmaxa Q(St+1,a,w) in the case of discounted Q-learning). With every weight

update, we aim to get our current estimate closer to the target, but updating the weights

of the current estimate causes the target to change. To get around this issue, we use

two value functions. One for the target and one which we update. Every Itarget steps,

we update the target VFA with the new weights.

The second problem is caused by the correlation between consecutive updates.

When updates are performed on consecutive state-actions the updates become corre-

lated which inhibits learning. To avoid this, Asynchronous Methods use multiple par-

allel agents each with their own environment. All parallel agents update the same VFA

weights, but since they are likely to explore different parts of the state space at any

given time, the updates will not be correlated. Additionally, running multiple agents in

parallel has shown to improve convergence time.

2.7 Problems with Discounted Returns

2.7.1 General Problems

Schwartz [8] identifies some of the limitations of discounted returns. First, discounted

returns are strongly related to the net present value in economics [10]. Obtaining

capital X today is worth more than obtaining it tomorrow as that capital could be

invested today to yield a higher sum the next day. Discounting in this context serves a

clear purpose and is justified. However, in many tasks, rewards are unrelated to capital

which possibly makes discounting obsolete.

Additionally, a possible justification for discounting includes the finiteness of the

agent’s life. When end states are present, there is a possibility that the agent will ’die’

before reaching any future rewards. Distant rewards are, therefore, worth less because

there is a chance the agent will not reach them. This does not, however, justify the use

of discounting for continuing tasks as there are no end states.

Finally, the average reward or cumulative reward is usually used as a performance

metric to evaluate RL methods. If we aim to maximize these undiscounted metrics,

Chapter 2. Background 8

it makes little sense to use discounted returns which aims to maximize a discounted

metric.

Schwartz [8] suggests that discounting may only be used to obtain finite values

from an infinite sum of rewards. These arguments suggest that discounted returns may

be inappropriate in continuing tasks and in tasks where rewards are unrelated to capital.

2.7.2 Problems with VFA

Singh et. al [9] argue that discounted returns should not be used with POMDPs, MDPs

where the agent may not be able to distinguish between every state. Action-value

methods aim to maximize V(s) for each s which may be impossible when partial ob-

servability is introduced.

The POMDP in Figure 2.1 is introduced as an example [9]. Assuming initial values

of 0, choosing action A in state 1 increases V (1) but decreases V (2). On the other

hand, choosing action B in state 1 increases V (2) but decrease V(1). This suggests

that no policy can maximize the values for each state, and that discounted returns are,

therefore, inappropriate in POMDPs.

Singh et. al [9] argue that in the episodic case, it is sufficient to optimize the value

of the starting state. In the continuing case, however, they propose to optimize the

mean value over the policy state distribution:

∑
s∈S

µπ(s)Vπ(s)

where µπ(s) is the probability of being in state s when following policy π. Optimizing

this metric has been shown to be equivalent to optimizing average rewards [11]. They,

therefore, argue that average rewards should be used in POMDPs.

But how are POMDPs related to VFA? The function approximation method is often

not complex enough to model a 1 to 1 mapping between states and values, like tabular

methods, and is required to generalize. This generalization can lead VFA to predict

similar values for similar states, causing a behavior similar to state aggregation and

the introduction of partial observability. Sutton and Barto [11], therefore, claim that

discounted returns should not be used with VFA in continuing tasks.

Chapter 2. Background 9

Figure 2.1: Example POMDP [9]. State 2a and 2b are indistinguishable by the agent.

2.8 Related Work

To our knowledge, there has not been any empirical comparison of discounted returns

and average rewards using VFA in continuing tasks. However, Schwartz [8] and Ma-

hadevan [5] have compared both methods using tabular Q-Learning and have found

that average rewards achieve better final performance than discounted returns when

evaluated using average rewards. Additionally, both comparisons use tasks with rela-

tively small state spaces. Because these comparisons do not use VFA, they cannot be

used to assess whether discounted returns should be discontinued for continuing tasks

using VFA.

Tsitsiklis and Van Roy [13] suggest analytically that using discounted returns (with

high γ) is equivalent to using average rewards in continuing tasks using linear VFA.

They mention, however, that this claim should be verified with numerical experimen-

tation, which we deliver in our experiments.

Chapter 3

Empirical comparison: Methodology

3.1 Tasks

The different algorithm configurations described in this chapter are compared using

three different tasks of different complexity. Using multiple tasks ensures that the re-

sults generalize to tasks in different domains and of different complexity. This section

provides a description of the tasks used. (The tasks have been made publicly available

for future research: https://github.com/Lucas-De/RL-Continuing-Tasks)

Task 1 Task 2 Task 3

Figure 3.1: Visualisation screenshots of task 1, 2 and 3

3.1.1 Task 1

The first task is inspired by the queuing problem described by Sutton and Barto [11].

The environment consists of a queue containing customers of uniformly distributed

priorities of 1, 2, 4 and 8. These customers can be assigned to 10 servers. The agent

10

Chapter 3. Empirical comparison: Methodology 11

must decide whether to assign the customer at the front of the queue to a server or

reject the customer. Assigning a customer of priority p to server results in a reward of

p. If all servers are full and the agent accepts a customer, the customer is automatically

rejected. We introduce a reward of -1 in this event in order to avoid policies where the

agent always accepts customers. At each time step, each server has a probability of

0.06 of becoming free. Finally, the queue remains full at all times.

The state representation consists of a vector of size 11 containing the priority of

the first 10 customers in the queue, as well as the number of free servers. This results

in over 1.04× 107 unique states. The agent has two actions available: accept, reject.

This results in over 2.08×107 different action-values. While it is possible to represent

a policy using tabular methods for a state space of this size, VFA allows generalizing

to unseen states and therefore may require less exploration and less training steps. A

tabular method, on the other hand, would require at least 2.08× 107 training steps to

update each action value once. This clearly justifies the use of VFA for this task.

3.1.2 Task 2

The second task is inspired by the factory simulation introduced by Mahadevan et. al

[6]. The environment consists of a machine that can produce one of 5 products and

store them in buffers of respective sizes (30, 20, 15, 15 and 10). Demands for each

product have different stochastic inter-arrival times and prices (9, 7, 16, 20 or 25). A

demand arrival for a product results in a reward equal to the product price. Failures

can occur randomly at any point and force a repair resulting in a reward of -5000

and the interruption of all production. Failures can be avoided by performing regular

maintenance. Performing maintenance results in a reward of -500 and stops production

for a shorter time than a repair. We refer to Appendix A for the details regarding the

distributions of demand arrivals, failure arrivals, repairs times and maintenance times.

After the completion of production, the end of a repair, or the end of maintenance,

the agent must decide to produce one of the 5 products or to perform maintenance.

When production starts for a product, it may not stop until the buffer is full or a failure

occurs.

The state representation consists of a vector of size 6 containing the number of

products present in each buffer, as well as the time since the previous repair or main-

tenance. Because this last feature is continuous and unbounded, the state space is

theoretically infinite. We, however, attempt to estimate its size if tabular methods were

Chapter 3. Empirical comparison: Methodology 12

to be used. Assuming we only use integer values in the range of [50-750] for the time

since last repair/maintenance, we obtain a state-space of size 9.45× 108. Since the

agent can perform 6 actions this results in 5.67× 109 action values. Assuming we

store each action-value as a Python float, which occupies 24bytes, this would result in

a minimum memory requirement of 136 gigabytes. The nature of the state-space, as

well as its size, clearly justifies the use of VFA.

3.1.3 Task 3

For the last task, we implemented a simple game where cubes fall from the top of a

10x10 pixel screen. The agent must move left, right, or remain in its current position

to collect the squares and obtain a reward.

• Each row contains a white square with probability 0.5. The square is placed

uniformly in one of the 10 columns.

• At each time step, each row is shifted down by one pixel.

• The grey square on the bottom row represents the agent

• At each time step, the agent can move left or right by one pixel or stay in its

current position. If the agent and a white square are in the same position, a

reward of 1 is received.

As there are more white squares than the agent can collect, the agent must not only

learn to collect the white squares but also learn which ones to collect to maximize

future rewards. (A video example is available at: https://youtu.be/P1GFhcgVdV8)

The state-representation consists of a 10x10 pixel matrix where 0 represents a black

pixel and 255 for a white pixel. The first 9 rows may each have 11 different configura-

tions (the white square can be present in one of 10 positions or be absent from the row)

while the bottom row may have 100 (10 positions for the grey square × 10 positions

for the white square, including the absence of one). This results in a state-space of size

2.33×1011.

We chose this task as it allows the use of image state-representation and a larger

state space than the two previous tasks. This task also provides a relatively different

domain to task 1 and 2. Additionally, the state-representation remains simple enough

to satisfy the time requirements for this project. A more complex task may require a

more complex VFA which would increase training time and may not allow to run the

desired experiments in the time available.

Chapter 3. Empirical comparison: Methodology 13

3.2 Algorithms

We implemented Asynchronous Q-Learning [7] and Asynchronous SARSA [7] each

with discounted returns and average rewards. Asynchronous methods were chosen

as they show state of the art results on common RL benchmark tasks. We chose to

use both Q-Learning and SARSA to allow to draw conclusions about both on and

off-policy methods. Both methods are implemented using both linear function approx-

imation and neural networks. This allows to investigate the effect of VFA complexity

of discounted returns and average rewards.

We reuse the parameters from the original paper on Asynchronous methods [7]

with the exception of parameters present in the update equation for discounted returns

(α, β) and average rewards (α, γ). We chose to perform a random search for these

parameters as they are expected to have the most effect on performance (we provide

more details for this in the evaluation section). We use 16 parallel asynchronous agents

for each run as it results in faster convergence [7]. Finally, we use the same exploration

method as the original paper: each parallel agent has a different exploration rate εi = 1

which is annealed to 0.1, 0.01, 0.5 with respective probabilities 0.4, 0.3, 0.3 over the

first 4 million steps. Each run for task 1 and 2 consists of 5 million steps as this showed

to be enough to obtain convergence. For task 3, each run was limited to 10 million

steps to allow the completion of experiments in the available time. While this is not

sufficient to observe the limit behavior, it is sufficient to observe significant differences

between the methods compared.

3.3 Value Function Approximation

For task 1 and 2 we use a linear model (defined as a neural network with no hid-

den layer) and a 2 hidden layer neural network with ReLu [4] activation. We use

(lengthinput− lengthout put)/2 neurons in each hidden layer to attempt to scale the com-

plexity of the network to the complexity of the task.

For task 3, we use a similar linear model, and a convolutional neural network

(CNN) [3]. Because the task is more complex and the initial neural network showed

relatively poor performance, we added an additional more complex neural network.

The architectures of the two CNNs are described in Figure 3.2.

Chapter 3. Empirical comparison: Methodology 14

3x3 Convolution

Stride: 1

Activation: ReLu

5x5 Convolution

Stride: 1

Activation: ReLu

10 Filters

10 Filters

3x3 Convolution

Stride: 1

Activation: ReLu

10 Filters

2x2
Max-pooling

Feed Forward
Size: 50
Activation: ReLu

Feed Forward

2x2
Max-pooling

2x2
Max-pooling

Action ValuesConcatenate

3x3 Convolution

Stride: 1

Activation: ReLu

10 Filters

3x3 Convolution

Stride: 1

Activation: ReLu

20 Filters

2x2
Max-pooling

2x2
Max-pooling Feed Forward Action Values

Figure 3.2: Architecture of the two CNNs used in task 3. V1 (top) and V2 (bottom). The

leftmost block represents an image input for task 3

3.4 Evaluation

3.4.1 Parameter Optimization

It is important when comparing two methods empirically, that both methods are opti-

mized to the same extent. To ensure that every algorithm configuration is optimized

to a similar extent, we perform a random search over the respective parameters for

each configuration. In the case of discounted returns, we search over the learning rate

αdiscounted and the discount factor γ. For average rewards, we perform the search over

the learning rate αaverage and the parameter β (Mahadevan [5] highlights the sensitivity

of average rewards to these parameters). The parameters αdiscounted , αaverage and β

were sampled from a LogUni f orm(10−5,102) distribution. The discount factor γ must

approach 1 for discounted returns to approximate average rewards, it was therefore

sampled from 1−LogUni f orm(10−5,102). A random search of 100 samples is per-

formed for each algorithm configuration on each task. We chose to use random search

as it is computationally cheap, can be run in parallel and can provide better results than

grid search [1].

3.4.2 Evaluating Policies

Every one million steps during training, we freeze the value function weights and

perform an offline evaluation of the resulting greedy policy (Colas et al. [2] advocate

comparing RL methods offline rather than using the performance during training). To

do so, we perform 5 runs (each with random initialization and different seed) of 50,000

Chapter 3. Empirical comparison: Methodology 15

steps and measure the average reward obtained in each run. It is necessary to perform

this for more than a single run as different initialisation and seeds could lead to different

sections of the state space being explored.

We compute the average reward for each run by dividing the cumulative reward

by the number of steps. The average reward obtained of each of the 5 runs is then

averaged and is used as a performance metric for the greedy policy.

3.4.3 Comparison of Discounted Returns and Average Rewards

To compare the two methods, we select the 30 runs from the parameter search with the

best greedy post-training performance (measured as described above). We average this

performance metric over the 30 best runs and provide a 95% confidence interval for the

mean. This is done for every one million steps to form a learning curve and compare

convergence properties of the two methods. Finally, we use a Kolmogorov-Smirnov

test to test the null hypothesis that both the 30 best runs for discounted returns and

average rewards have a post-training performance drawn from the same distribution.

This statistical test was chosen as it makes no assumption on the distribution of the two

samples. Colas et al. [2] recommend using a Bonferroni correction due to an increased

chance of incorrectly rejecting the null hypothesis when performing multiple tests.

Because we perform 14 tests and want a significance of 0.05, we use a significance of

0.05/14 for each test.

Chapter 4

Empirical comparison: Results

The results presented in Figures 4.1, 4.2 and 4.3 show the results of the empirical

comparison. The grid search results are present in Appendix B. In this chapter, we aim

to identify performance differences and their possible causes.

4.1 VFA Complexity

The results for task 1 and 2 (with the exception of Q-Learning in task 2) show a clear

advantage for average rewards when linear VFA is used. This runs counter to the

hypothesis presented by Tsitsiklis and Van Roy [13]. Discounted returns and aver-

age rewards achieve similar performance when the neural network is used however.

This could indicate that both methods are equally performant when VFA is complex

enough. In task 3, average rewards consistently outperform discounted returns, even

when using the most complex VFA, which does not seem to confirm this hypothesis.

It is possible that neither of the neural networks used is complex enough to observe

similar performance between discounted returns and average rewards. Alternatively, it

is possible that their performance will indeed be similar after full convergence.

As discussed in Ch.2, a linear model, having fewer parameters, can distinguish

between fewer states than a neural network. This causes a higher level of state ag-

gregation which is equivalent to decreasing the observability of the environment. As

Singh et. al [9] indicate, discounted returns seem to be inappropriate when partial ob-

servability is introduced as optimizing the value in each state becomes impossible. We

hypothesize that the difference in performance between discounted returns and aver-

age rewards is due to the introduction of partial observability by a VFA too simple to

distinguish between a sufficient amount of states. We investigate this further in Ch. 5.

16

Chapter 4. Empirical comparison: Results 17

4.2 On-policy vs Off-policy

Both task 1 and 2 do not show any noticeable differences in final performance or con-

vergence between Q-Learning and SARSA. In task 3, however, while average rewards

have similar performance for both Q-Learning and SARSA, discounted returns show

significantly poorer results for Q-Learning. Thrun et al. [12] have suggested that

the combination of VFA, Q-learning and discounted returns could lead to an over-

estimation of action-values and result in poor performance. This claim is a possible

explanation for the different behaviors observed in Q-Learning and SARSA.

Average Rewards Discounted Return

0 1 2 3 4 5
0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Re
w

ar
ds

Q-Learning

Linear

p-value = 1.80e-14

0 1 2 3 4 5

Neural Network

p-value = 0.109

0 1 2 3 4 5
Million Steps

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Re
w

ar
ds

SARSA

p-value = 1.80e-14

0 1 2 3 4 5
Million Steps

p-value = 0.026

Figure 4.1: Learning Curves for task 1. Each curve represents the average reward

averaged over the 30 best of the given algorithm configuration. The shaded areas

represent the 95% confidence interval for the mean. The p-value for the Kolmogorov-

Smirnov test is presented in red if the difference in final performance is significant

Chapter 4. Empirical comparison: Results 18

Average Rewards Discounted Return

Linear Neural Network

0 1 2 3 4 5

Av
er

ag
e

Re
w

ar
ds

Q-Learning

p-value = 6.17e-05

0 1 2 3 4 5

p-value = 0.055

0 1 2 3 4 5
Million Steps

-250

-200

-150

-100

-50

0

Av
er

ag
e

Re
w

ar
ds

SARSA

p-value = 1.50e-13

0 1 2 3 4 5
Million Steps

p-value = 0.342

-250

-200

-150

-100

-50

0

Figure 4.2: Learning Curves for task 2. Each curve represents the average reward

averaged over the 30 best of the given algorithm configuration. The shaded areas

represent the 95% confidence interval for the mean. The p-value for the Kolmogorov-

Smirnov test is presented in red if the difference in final performance is significant

Chapter 4. Empirical comparison: Results 19

0 2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

Re
w

ar
ds

Q-Learning

Linear

p-value = 1.80e-14

0 2 4 6 8 10

Neural Network

p-value = 8.38e-12

0 2 4 6 8 10

Neural Network V2

p-value = 1.50e-13

0 2 4 6 8 10
Million Steps

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

Re
w

ar
ds

SARSA

p-value = 6.17e-05

0 2 4 6 8 10
Million Steps

p-value = 5.59e-08

0 2 4 6 8 10
Million Steps

p-value = 8.38e-12

Average Rewards Discounted Return

Figure 4.3: Learning Curves for task 3. Each curve represents the average reward

averaged over the 30 best of the given algorithm configuration. The shaded areas

represent the 95% confidence interval for the mean. The p-value for the Kolmogorov-

Smirnov test is presented in red if the difference in final performance is significant

Chapter 5

POMDP: Discounted Returns or

Average Rewards

5.1 Methodology

In the previous chapter, we hypothesized that the performance difference between dis-

counted returns and average rewards in continuing tasks using VFA was due to the

introduction of partial observability by simple VFA. To test this hypothesis, we dis-

miss VFA and use tabular methods with manually introduced partial observability. If

the hypothesis is correct, we expect to see a higher performance for average rewards

and the performance difference between discounted returns and average rewards to

increase as the observability decreases.

We use simplified versions of the three tasks from the VFA experiments to allow

the use of tabular methods. For each task, we compare discounted returns and average

rewards on three different versions of the task, each with different levels of observabil-

ity. To introduce partial observability, we create task-specific state aggregations. For

each task, observability and algorithm configuration, we perform a grid search similar

to the one described in Ch.3. The 30 best runs are then used for comparison. Perfor-

mance is measured similarly to Ch.3 using average rewards measured offline after 5

million training steps (a high number of steps was used to ensure convergence).

Task 1: To allow the use of tabular methods, we reduce the task’s state space. We

describe the high, medium and low observability version of the state space.

• High: The state space consists of the priority of the first 3 customers in the queue

as well as the number of free servers.

20

Chapter 5. POMDP: Discounted Returns or Average Rewards 21

• Medium: The state space is similar to the high version, other than the number of

free servers feature which is replaced with a binary feature indicating whether at

least one server is free.

• Low: The state space is similar to the medium version but we aggregate priorities

of 1, 2 (low) and priorities of 4, 8 (high).

Task 2: To allow the use of tabular methods, we simplify the task by using 2 rather

than 5 product types. The different observability versions of the state space are defined

as follows:

• High: The state space consists of the number of products in each buffer as well

as the time since last repair/maintenance. For this last feature, we aggregate all

states into bins of 10.

• Med: The state space is similar to the high version, however, we aggregate the

number of products in each buffer using bins of size 5. The time since last

repair/maintenance is aggregated into bins of size 100.

• Low: The number of products in each buffer is aggregated into bins of size 10.

The time since last repair/maintenance is aggregated into bins of size 300.

To aggregate a feature x into bins of size K, we transform x using the following func-

tion:

f (x) = bx/Kc

Task 3: To allow the use of tabular methods, we simplify the task by using an envi-

ronment of 4×4 pixels (instead of 10×10 pixels as in the original task). The different

observability versions of the state space are defined as follows:

• High: The state space consists of the values of all 16 pixels.

• Med: The pixels in positions (0,0), (1,1), (2,2) are unobservable (their value is

always 0)

• Low: The pixels in positions (0,0), (1,1), (2,2), (0,3), (1,2), (2,1) are unobserv-

able (their value is always 0)

Chapter 5. POMDP: Discounted Returns or Average Rewards 22

5.2 Results

Figure 5.1 shows the comparison between all algorithm configurations on each task and

level of observability. While the performance of average rewards is consistently higher

or equal to discounted returns for task 2 and 3, this is not the case for task 1. These

results run counter to the claim made by Singh et al. [9] stating that discounted returns

should not be used with POMDPs. When tabular methods are used, these experiments

show that neither average rewards or discounted returns consistently outperforms the

other and that the best option may be dependent on the task.

The performance difference between average rewards and discounted returns does

not seem to increase as observability decreases. In fact, the performance of discounted

returns on Task 1 seems to increase as observability decreases. These results run

counter to our hypothesis indicating that the introduction of partial observability may

be the cause for the superior performance of average rewards on continuing tasks using

VFA.

high med low
Observability

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Av
er

ag
e

Re
w

ar
d

high med low

Observability

Task 3

high med low
2.4

2.5

2.6

2.7

2.8

Av
er

ag
e

Re
w

ar
d

high med low

Task 1

Q-Learning SARSA

high med low
-16

-14

-12

-10

-8

-6

-4

Av
er

ag
e

Re
w

ar
d

high med low

Task 2

Average Rewards Discounted Return

Figure 5.1: Mean greedy performance after training. The error bars represent the 95%

confidence interval for the mean

Chapter 6

VFA Complexity: Discounted Returns

vs. Average Rewards

6.1 Hypothesis

The experiments presented in the previous chapter seems to indicate that the intro-

duction of partial observability by simple VFA is not the cause for the performance

difference between discounted returns and average rewards. In this chapter, we aim to

investigate an alternative reason for this performance difference.

Schwartz [8] indicates that a possible advantage of average rewards is linked to

the linearity of undiscounted values in unichain domains with constant rewards. We

provide an example in Figure 6.1. The example shows that a linear function is sufficient

to map states to action-values in the example MDP when using average rewards but not

when using discounted returns. This may partly explain why average rewards show a

better performance when linear VFA is used and why when using a complex enough

VFA both average rewards and discounted returns can achieve similar performance.

Sutton and Barto [11] mention that depending on the task, either action-values or

policy gradient policies might be easier to represent using function approximation and

consequently obtain a performance advantage. We make a similar hypothesis, stating

that average rewards action-values are generally easier to estimate than discounted

returns and therefore obtain higher performance when simple VFA is used.

23

Chapter 6. VFA Complexity: Discounted Returns vs. Average Rewards 24

0 100 200 300 400 500
State

0

20

40

60

80

100

Va
lu
e

Discounted Returns

0 100 200 300 400 500
State

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu
e

Average Rewards

1 2 3 54 500

R=1 R=1 R=1R=1 R=1

Figure 6.1: (top) Example unichain MDP with constant reward. (bottom-left) Theoret-

ical discounted returns action-values for the example MDP. (bottom-right) Theoretical

average rewards action-values for the example MDP.

6.2 Methodology

To investigate this hypothesis, we use supervised learning to learn action-values from

tabular methods. First, we find 30 pairs of discounted returns and average rewards

tabular runs with similar performance from the random search described in Ch.5. To

do so we take the 30 best discounted returns runs and pair each with the average reward

run with the closest post-training greedy performance. We then train a linear model

(defined by a neural network with no hidden layer) to learn the state→ action-values

mapping from the tabular policies. Finally, we evaluate the obtained linear policies

offline using average rewards (as described in Ch.3). We expect that while the tabular

pairs have (by design) similar performance, their resulting linear policies will show

a performance advantage in favor of average rewards (due to the action-values being

easier to learn).

We chose to perform this experiment on the high observability version of task 3 as

it is the task with the biggest state-space for which we have trained tabular policies.

Once again we repeat the experiments for both Q-Learning and SARSA to see whether

the observed behavior generalizes to both on and off-policy methods. We used 75% of

the states as training data and 25% as validation. We trained the linear models using

ADAM with early stopping.

Chapter 6. VFA Complexity: Discounted Returns vs. Average Rewards 25

6.3 Results

Figure 6.2 shows that while the tabular (discounted returns, average rewards) pair per-

formances are similar (the points approximately follow the line x = y), the resulting

linear policies generally show an advantage for average rewards. This seems to sug-

gest that average reward action-values are easier to estimate.

For a different task, the discounted returns action-values may be easier to estimate

resulting in better performance. The results are, therefore, not fully conclusive as only

one task has been tested.

0.32 0.34 0.36 0.38 0.40 0.42
0.32

0.34

0.36

0.38

0.40

0.42

Av
er

ag
e

Re
wa

rd
s

0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.32 0.34 0.36 0.38 0.40 0.42
Discounted Returns

0.32

0.34

0.36

0.38

0.40

0.42

Av
er

ag
e

Re
wa

rd
s

0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Discounted Returns

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

y=x Mean

Tabular Linear

Q-Learning

SARSA

Figure 6.2: Discounted returns and average rewards performance using tabular meth-

ods and a linear supervised model.

Chapter 7

Conclusions

This thesis provides an empirical comparison of discounted returns and average re-

wards on continuing tasks using value function approximation. Additionally, it aims

to identify potential causes for the performance difference between these methods.

The empirical comparison indicates that average rewards show superior final per-

formance than discounted returns when linear models are used. Furthermore, it is hy-

pothesized that when VFA is complex enough both methods obtain similar results. The

results, however, remain not fully conclusive for several reasons. First, there are ex-

ceptions to these observations: in the case of Q-Learning with the linear model in task

2, discounted returns outperform average rewards. Additionally, the parameter search

conducted was limited. It is possible that average rewards and discounted returns are

sensitive to the parameters related to Asynchronous Methods. Also, Mahadevan [5]

shows that average rewards are very sensitive to the exploration strategy. We, however,

limited our comparison to ε-greedy exploration. Finally, while the results are relatively

consistent across the three tasks, different results could be obtained for different tasks

in different domains. This opens different possibilities for future research to extend

our work. The results do, however, currently advocate for the use of average rewards

in continuing tasks using VFA.

We investigated two possible causes for the performance difference between aver-

age rewards and discounted returns. First, we hypothesized that VFA introduced partial

observability which in turn causes problems with discounted returns. The experiments

presented in Ch. 5, however, do not support this hypothesis. Finally, we hypothesized

that average rewards action-values were simpler to estimate and required a simpler

network, leading to better performance when simple VFA is used. The experiments

presented in Ch. 6 coincide with the hypothesis and open the way for future research.

26

Bibliography

[1] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-

mization. Journal of Machine Learning Research, 13:281–305, 2012.

[2] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A hitchhikers guide to

statistical comparisons of reinforcement learning algorithms. 2019.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[4] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[5] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algo-

rithms, and empirical results. Machine learning, 22:159–195, 1996.

[6] Sridhar Mahadevan, Nicholas Marchalleck, Tapas K Das, and Abhijit Gosavi.

Self-improving factory simulation using continuous-time average-reward rein-

forcement learning. In Machine learning-international workshop then confer-

ence, pages 202–210, 1997.

[7] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine

learning, pages 1928–1937, 2016.

[8] Anton Schwartz. A reinforcement learning method for maximizing undiscounted

rewards. In Proceedings of the tenth international conference on machine learn-

ing, volume 298, pages 298–305, 1993.

27

Bibliography 28

[9] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Learning without

state-estimation in partially observable markovian decision processes. In Ma-

chine Learning Proceedings 1994, pages 284–292. 1994.

[10] Ezra Solomon. The arithmetic of capital budgeting decisions, volume 29. 1956.

[11] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[12] Sebastian Thrun and Anton Schwartz. Issues in using function approximation

for reinforcement learning. In Proceedings of the 1993 Connectionist Models

Summer School Hillsdale, NJ. Lawrence Erlbaum, 1993.

[13] John N Tsitsiklis and Benjamin Van Roy. On average versus discounted reward

temporal-difference learning. Machine Learning, 49:179–191, 2002.

Appendix A

Task 2 Parameters [6]

• Demand arrival process for each product i is Poisson(λi)

• Production time for each product follows distribution Gamma(di,λi)

• Time between failures has Gamma(k,µ) distribution

• Time required for maintenance has a Uniform(a,b) distribution

• Time for repair has a Gamma(r,δ)distribution

Time Bet. Failures (k,µ) Repair Time (r,δ) Maint. Time (a,b)

(6,0.02) (2,0.04) (20,40)

Table A.1: Production inventory system parameters [6].

Product Prod. Time (d,λ) Demand Arrival (γ) Buffer Size Unit Reward

1 (8,8/1) 1/6 30 9

2 (8,8/2) 1/9 20 7

3 (8,8/3) 1/21 15 16

4 (8,8/4) 1/26 15 20

5 (8,8/5) 1/30 10 25

Table A.2: Production inventory product parameters [6].

29

Appendix B

VFA Experiments: Random Search

0.99

0.999

0.9999

0.99999

Di
sc

ou
nt

 F
ac

to
r

Linear

Q-Learning

Neural Network

10 5 10 4 10 3 10 2

Learning Rate

0.99

0.999

0.9999

0.99999

Di
sc

ou
nt

 F
ac

to
r

SARSA

10 5 10 4 10 3 10 2

Learning Rate

1.8

1.9

2.0

2.1

2.2

2.3

1.8

2.0

2.2

2.4

2.6

1.8

2.0

2.2

2.4

2.6

1.6

1.8

2.0

2.2

2.4

2.6

Discounted Returns

Figure B.1: Random parameter search for Task 1, Discounted Returns

30

Appendix B. VFA Experiments: Random Search 31

10 5

10 4

10 3

10 2

Be
ta

Linear

Q-Learning

Neural Network

10 5 10 4 10 3 10 2

Learning Rate

10 5

10 4

10 3

10 2

Be
taSARSA

10 5 10 4 10 3 10 2

Learning Rate

1.8

2.0

2.2

2.4

2.6

1.8

2.0

2.2

2.4

2.6

1.8

2.0

2.2

2.4

2.6

1.8

2.0

2.2

2.4

2.6

Average Rewards

Figure B.2: Random parameter search for Task 1, Average Rewards

0.99

0.999

0.9999

0.99999

Di
sc

ou
nt

 F
ac

to
r

Linear

Q-Learning

Neural Network

10 5 10 4 10 3 10 2

Learning Rate

0.99

0.999

0.9999

0.99999

Di
sc

ou
nt

 F
ac

to
r

SARSA

10 5 10 4 10 3 10 2

Learning Rate

60

50

40

30

20

10

500

400

300

200

100

400

300

200

100

500

400

300

200

100

Discounted Returns

Figure B.3: Random parameter search for Task 2, Discounted Returns

Appendix B. VFA Experiments: Random Search 32

10 5

10 4

10 3

10 2

Be
ta

Linear

Q-Learning

Neural Network

10 5 10 4 10 3 10 2

Learning Rate

10 5

10 4

10 3

10 2

Be
taSARSA

10 5 10 4 10 3 10 2

Learning Rate

40

30

20

10

25

20

15

10

5

40

30

20

10

25

20

15

10

5

Average Rewards

Figure B.4: Random parameter search for Task 2, Average Rewards

0.99

0.999

0.9999

0.99999

D
is

co
un

t F
ac

to
r

Linear

Q-Learning

Neural Network

10 5 10 4 10 3 10 2

Learning Rate

0.99

0.999

0.9999

0.99999

D
is

co
un

t F
ac

to
r

SARSA

10 5 10 4 10 3 10 2

Learning Rate

0.01

0.02

0.03

0.04

0.05

0.06

0.08

0.10

0.12

0.06

0.08

0.10

0.12

0.06

0.08

0.10

0.12

0.14

0.16

Discounted Returns
Neural Network_v2

10 5 10 4 10 3 10 2

Learning Rate

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Figure B.5: Random parameter search for Task 3, Discounted Returns

Appendix B. VFA Experiments: Random Search 33

10 5

10 4

10 3

10 2

Be
ta

Linear

Q-Learning

Neural Network

10 5 10 4 10 3 10 2

Learning Rate

10 5

10 4

10 3

10 2

Be
taSARSA

10 5 10 4 10 3 10 2

Learning Rate

0.05

0.06

0.07

0.08

0.09

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.04

0.06

0.08

0.10

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Average Rewards

Neural Network_v2

10 5 10 4 10 3 10 2

Learning Rate

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Figure B.6: Random parameter search for Task 3, Average Rewards

