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Abstract
Many real-world problems can only be solved when multiple agents work together.

Each agent often has only a partial view of the whole environment. Therefore,

communication and cooperation are important abilities for agents in these en-

vironments. In this thesis, we test the ability of an existing deep multi-agent

actor-critic algorithm to cope with partially observable scenarios. In addition, we

propose to adapt this algorithm to use recurrent neural networks, which enables

using information from past steps to improve action-value predictions. We eval-

uate the algorithms in cooperative environments that require cooperation and

communication. Furthermore, we simulate varying degrees of partial observabil-

ity of actions and observations from other agents. Our experiments show that

our proposed recurrent adaptation achieves equally good or significantly better

success rates compared to the original method when only actions of other agents

are partially observed. However, for other settings our adaptation also can per-

form worse than the original method, especially when the observations of other

agents are only partially observed.
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Chapter 1

Introduction

Cooperation and communication are important abilities for intelligent and au-

tonomous agents that are deployed in complex environments including multiple

agents. In many real-world problems, each agent has only partial observability

of the environment. In these settings, communication with other agents enables

them to exchange information such that each agent gets a better picture of the

situation. Communication can also be necessary to coordinate the behavior of

the agents, where the goals or states of the agents can be seen as a special case

of partial observability.

It is possible to design the communication and cooperation of agents in advance,

such as sharing certain state information with other agents [2, 47, 49, 53]. How-

ever, agents might be required to optimize their behavior online, because envi-

ronments can be so complex that a priori design of policies is difficult [44, 48].

This is especially the case when the environment changes over time. Therefore,

we are interested in algorithms that learn a policy autonomously for a given task.

Reinforcement learning (RL) algorithms are able to optimize a policy for an

environment, while only being given a numerical reward signal [51]. Recently,

single-agent RL methods combined with neural networks have proven to exceed

human performance in tasks with huge state spaces such as the game of Go [46]

and Atari games [35], as well as tasks with high dimensional action spaces such

as locomotive control [29].

There also has been a lot of recent work on using deep RL for learning to coop-

erate and communicate in multi-agent settings [10, 12, 13, 11, 16, 31, 36, 40, 50].
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2 Chapter 1. Introduction

These approaches show that deep RL is a promising approach, as the experiments

showed the emergence of cooperation and simple communication in various envi-

ronments. However, these approaches rely on centralized training, which means

that more information is available during training than they have access to at

test time. An example are robots in a lab setting that are connected to a central

computer that shares information between all robots, e.g. their positions [24].

Other examples are differentiable communication channels [10, 50] and access to

the policies of other agents [31].

The assumption of a centralized training is problematic, because it is often not

possible to share additional information during training. For example, robots that

are deployed in real-world scenarios have only a limited communication band-

width. Therefore, it might not be feasible to share information such as their

policies. There also may be no central entity which has full knowledge about

the environment. Thus, algorithms for these scenarios must be able to deal with

partial observability and limited communication during training and execution.

Approaches to deep decentralized multi-agent RL exist. For example, Omidshafiei

et al. [39] proposed an algorithm based on recurrent neural networks that is able

to train cooperative agents in decentralized settings, which means agents have no

knowledge of each other. However, their approach does not scale to large action

spaces and we think that the assumption of having no information about other

agents at all is too restrictive.

Therefore, we want to investigate whether the multi-agent deep deterministic

policy gradients (MADDPG) algorithm proposed by Lowe et al. [31] applies to

decentralized settings. This algorithm scales well for high-dimensional continu-

ous action and observation spaces, but assumes centralized training with access

to other agents’ policies, actions and observations. They already proposed the

possibility to model the policies of other agents, which removes one assumption

of the centralized training. During the centralized training the actions and obser-

vations of all agents are used to train critic networks, these are then used to train

policies that only depend on local observations. Thus, the question that remains

is how much the algorithm depends on having access to other agents’ actions and

observations to train the critic.

The contribution of this thesis is twofold: First, we examine how much the MAD-
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DPG method depends on other agents’ actions and observations about the envi-

ronment, by making these partially observable for the individual agents during

the learning process. We simulate partial observability by adding noise to ob-

served actions and observations. Second, we propose an adaption to MADDPG

named Rec-MADDPG that uses recurrent neural networks as critics to deal with

the partial observability. Using recurrent neural networks in partially observable

environments has already been proposed for the single-agent case [15, 17] and

also for multi-agent scenarios [39], as mentioned above. However, to the best

of our knowledge, this is the first multi-agent actor-critic algorithm for continu-

ous action and state spaces for partially observable environments. Furthermore,

we introduce a way to simulate and experiment with different degrees of partial

observability of other agents in the cooperative environments of Mordatch and

Abbeel [36].

This thesis is structured as follows: In the next chapter, we give background

information about deep neural networks, single-agent as well as multi-agent RL,

including the MADDPG algorithm. The second chapter first formalizes the prob-

lem of partial observability of other agents in decentralized settings, proposes a

recurrent multi-agent learning algorithm for partially observed decentralized en-

vironments and introduces the multi-agent environments in which we test and

compare the proposed algorithm with MADDPG. In Chapter 4, we present and

discuss the results of our experiments. Then we compare our approach to related

work, in Chapter 5 and finally propose future directions and conclude our work

in the last chapter.





Chapter 2

Background

This chapter gives the necessary background information for the rest of this thesis.

We first introduce deep neural networks, including feedforward and recurrent

networks. After that, in the second section, we introduce the standard single-

agent RL setting and traditional learning algorithms. Then, we present an actor-

critic method and describe how to combine it with deep neural networks. In

the third section, we introduce the multi-agent RL problem. We describe the

used theoretical multi-agent framework and discuss approaches to the multi-agent

learning problem. Finally, we present the multi-agent deep actor-critic method

that is examined and extended in this work.

2.1 Deep Neural Networks

Deep neural networks [27] (DNN) have recently outperformed other machine

learning techniques on many tasks, for example image recognition [25] and ma-

chine translation [56]. In the domain of RL, deep neural networks were the

driving force behind the success of playing Atari games [35] with super-human

performance in some games. Neural networks also already have been successfully

applied to multi-agent problems, for example, beating professional players in the

game of Go [46] or learning to communicate [10, 50]

Representation-learning methods are able to automatically discover the repre-

sentation of raw input data that is needed for the task at hand, e.g. regression

or classification. Deep neural networks are representation-learning methods that

5



6 Chapter 2. Background

compute multiple levels of representation before computing the final output [27].

Each representation is computed by a simple non-linear layer that takes the rep-

resentation from the previous layer and transforms it into a slightly more abstract

one. By combining enough of such transformations, it is possible to approximate

very complex functions without the requirement of any feature engineering.

The remainder of this section gives a brief overview about the structure of neural

networks, optimization techniques and also introduces recurrent neural networks

that are able to store information over time.

2.1.1 Feedforward Networks

Feedforward networks consist of a stack of non-linear layers, where each layer

is a linear transformation of the input features to a number of output features,

denoted as hidden units. Then, a non-linear function is applied to each of these

output features. The following equation describes a forward computation of a

layer in a neural network. The input into the layer is a d-dimensional vector x,

the output is the h-dimensional vector y and the layer has weights wij and bias

bj:

zj =
d∑
i=1

wijxi + bj, yj = f(zj), (2.1)

where z are called the activations of the layer and f(·) is a non-linear function

such as sigmoid σ(x) = 1/(1+exp(−x)). The weights of each layer can be trained

with the backpropagation method: given a derivative of the error of the prediction

with respect to the outputs of the network we can apply the chain rule step by

step and retrieve the error-derivative with respect to each weight and bias. More

formally, for the layer described in equation 2.1, the derivatives can be computed

as follows, given ∂E
∂yj

, the error-derivative of the layer’s output:

∂E

∂zj
=
∂E

∂yj

∂yj
∂zj

, (2.2)

this gives us the error-derivatives of the activations, which can then be used to

compute the error-derivatives of the weights and biases:

∂E

wij
= xi

∂E

∂zj
,

∂E

∂bj
=
∂E

∂zj
(2.3)
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and finally we compute the error-derivatives for the input of the layer which can

then be used to compute the error-derivatives in the next layer:

∂E

∂xi
=

h∑
j=1

wij
∂E

zj
. (2.4)

We are now able to learn the weights of a neural network, for example for a

regression task, by providing input data and the target values. First, we compute

a complete forward pass, i.e. starting from the input, all outputs of the layers are

computed until we get the final prediction. Then, we compute the error of the

prediction based on the target value and backpropagate the error. After that, we

update the the weights to minimize the error by setting them to wij ← wij−α ∂E
wij

,

where α is the learning rate that determines how much we change the weights.

Only using one example to compute the error-derivative of the weights is called

stochastic gradient descent, because we estimate the true derivative over the whole

dataset with a monte carlo approximation of the sum of all derivatives. It is

common to sample mini-batches of several samples to estimate the derivatives

instead of using single samples because it stabilizes the updates and is more

efficient to compute. There are extensions of stochastic gradient descent that

lead to a faster convergence. We use Adam [23] to train the neural networks in

our experiments. Adam maintains per-parameter learning rates that improves

performance on problems with sparse gradients and adapts the learning rates

based on the average first and second momentum of the gradient that makes it

perform well on online and non-stationary problems, which is especially appealing

for RL problems.

The derivative of the sigmoid function approaches zero for very large or very

small inputs, which can lead to the vanishing gradient problem [5], where layers

can have a gradient close to zero which slows down learning for following layers.

Therefore, it is common to use non-linear functions with a non-zero gradient.

The most common used one and the function that we use for all our experiments,

is the Rectified Linear Unit (ReLU) f(x) = max(0, x) [37], which has a non-zero

gradient for positive activations.
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Figure 2.1: (left) structure of a simple recurrent network, (right) network unrolled

over time [38].

2.1.2 Recurrent Networks

In contrast to feedforward networks, recurrent neural networks are able to use an

internal memory to process sequential data and store information over multiple

time-steps. This is done by passing hidden states to the next time-step, where

they are treated as inputs to the network. When we unroll recurrent networks

in time (as shown in Figure 2.1), we can see them as very deep neural networks

where all layers share the same weights [27]. In this way, we can see that we

can train a recurrent network with the same methods as feedforward networks.

However, training of recurrent neural networks turned out to be very difficult,

because “gradients either grow or shrink at each time-step” [27] which can lead

to exploding or vanishing gradients over many time-steps [20, 5].

To tackle this problem Hochreiter and Schmidhuber [21] introduced long short-

term memory (LSTM) networks. LSTMs have additional hidden units that act

as a memory, whose natural behavior is to store information for a long time. This

is done by copying them to the next time-step by multiplying them with a fixed

weight of one. However, this connection is controlled by another unit that can

decide to forget this information by setting copy-weight to a value smaller than

one.

2.2 Reinforcement Learning

In this section, we describe the RL setting for the single agent case. We first

introduce Markov decision processes for modeling stochastic environments and

then show basic algorithms to compute value functions and policies for agents in

these environments. After that, we describe how these methods can be combined
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with deep learning by using neural networks as function approximators. The

multi-agent learning method we apply and extend in this work is a deterministic

actor-critic method. Therefore, we mainly describe methods for deterministic

policies.

2.2.1 Markov Decision Processes

Agent

Environment, E

actionstate reward

Figure 2.2: The reinforcement learning loop (taken from [51])

In a single-agent RL setting, as described by Sutton and Barto [51], an agent

interacts with an environment E in discrete time-steps (as shown in Figure 2.2).

At each time-step t the agent takes an action at, receives the current state st of

the environment and a scalar reward rt. The agent accumulates rewards while it

moves through the state space. The behavior of the agents is defined by a policy

π, which selects the agent’s action in a state s based on a probability distribution

π(a|s). Such a policy is called a stochastic policy. If the policy is deterministic,

i.e. for every state one action is selected with probability 1, we write: µ(s) = a,

thus a policy is a mapping from states to actions1. The overall goal of RL is to

find a policy that maximizes the accumulated reward.

Most environments are stochastic, i.e. after taking an action there are multiple

states in which the environment could end up with different probabilities. If the

next state only depends on the current state and the action taken by the agent,

then the environment satisfies the Markov property. Stochastic environments

satisfying this property can be modeled using a Markov decision process (MDP).

More formally, a MDP consists of the following elements: a set of states s ∈ S
1It is common in RL literature to refer to stochastic policies with π and to deterministic

policies with µ.
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with an initial state s0 and a set of available actions s ∈ A. The dynamics

of the MDP are defined by the transition function p(s′|s, a), which defines the

probability of the agent to end up in state s′ after taking action a in state s.

The expected immediate reward is given by r(s, a). We call a MDP episodic if

it terminates after a finite number of steps. Since all problems we consider in

this thesis have a fixed number of maximal steps, we assume episodic MDPs from

now on. Furthermore, we denote the last time-step in which the environment

terminates by T . The return Rt is the discounted total reward that the agent

accumulates after time-step t:

Rt =
T∑
k=t

γk−tr(sk, ak), (2.5)

with γ ∈ [0, 1]. The agent’s goal is to maximize its accumulated discounted

reward over time. Therefore, we are interested in the expected return when being

in a particular state and following policy π. This is given by the value of a

state, which is formally defined as the expected return after being in state s and

following policy π:

V π(s) = Eπ[Rt|st = s], (2.6)

where Eπ denotes the expectation given the agent follows policy π. This function

is called the state-value function for policy π. Similarly, we define the action-

value function that gives the expected return, when taking action a in state s

and thereafter following policy π:

Qπ(s, a) = Eπ[Rt|st = s, at = a] (2.7)

State-value and action-value functions play a central role throughout RL. For

example, when the optimal action-value function is known, i.e. the highest return

that can be achieved from the current state-action pair, selecting the action with

the highest action-value in every state yields an optimal policy. For state-value

functions the model of the environment is required to determine the optimal

action for a given state.

A common framework for model-free RL is generalized policy iteration, with alter-

nating steps of policy evaluation and policy improvement [51]. Policy evaluation

methods estimate the value function of the policy, while the policy improvement

step improves the policy with respect to the estimated value function. In the next

sections, we first describe temporal difference learning for policy evaluation and
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policy gradient methods that directly optimize parameterized policies. Finally,

we introduce how these methods can be combined in actor-critic methods and

how neural networks can be used to approximate actor and critic.

2.2.2 Temporal Difference Learning

A fundamental property of value functions is that they have a recursive relation-

ship, which is used in RL and dynamic programming. Intuitively, we can compute

the value of a state V π(s) based on the value of the next expected state and the

reward received during the transition to this state [51]:

V π(s) = Eπ
[
r(s, a) + γV π(s′)

]
(2.8)

=
∑
a

π(a|s)
∑
s′

p(s′|s, a)
[
r(s, a) + γV π(s′)

]
(2.9)

This is referred to as the Bellman equation for state-values and can be used to

compute the value of a policy if the transition function p(·) is known, however, this

is not the case for most environments. Therefore, there are model-free algorithms

to learn the value function from experiences that are collected while following the

policy to evaluate. One of them is temporal difference learning, which uses an

estimate of the expectation in equation 2.8, to estimate the state-values for the

followed policy π. After transitioning from state s to s′ and receiving reward r

we update the value for state s as follows:

V (s)← V (s) + α
[
r + γV (s′)− V (s)

]
, (2.10)

here α is the learning rate at which we update the value estimations. Intuitively,

we compute a new estimate for V (s) by incorporating the received reward as new

information in combination with value of the next state.

Similarly, with the Bellman equation for action-values it is possible to compute

the action-values recursively:

Qπ(s, a) = Er,s′∼E
[
r + γEπ[Qπ(s′, a′)]

]
(2.11)

=
∑
s′

p(s′|s, a)
[
r(s, a) + γ

∑
a′

π(a′|s′)Qπ(s′, a′)
]

(2.12)

here we have one expectation for the next state and received reward and another

expectation over the action-values of the next state. The first expectation can be
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estimated by taking transitions while following the evaluated policy π as samples,

as we have done for equation 2.10. We could use the next chosen action to estimate

the inner expectation, which would yield the SARSA algorithm [43, 51]. Another

possibility is to use a deterministic policy µ(·), which removes the expectation

because always the same action is chosen:

Qµ(s, a) = Er,s′∼E
[
r + γQµ(s′, µ(s′))]

]
(2.13)

Now, the expectation only depends on the environment and therefore it is possible

to learn Qµ off-policy, which means we can use samples that are generated with

another behavior policy β. For example, if we set µ(s) = arg maxaQ(s, a) and

use the ε-greedy policy for exploration, we get the Q-Learning algorithm [54].

2.2.3 Deterministic Policy Gradient

As mentioned above, the primary goal of RL is to find a policy that maximizes

the expected return. This is achievable by estimating the optimal action-value

function and then selecting actions greedily. Another way is to optimize a param-

eterized policy directly, based on the gradient of the policy. This enables learning

policies for continuous high-dimensional action spaces, where it is difficult to

select the action with the highest action-value.

Instead of improving the policy greedily with respect to the action-value func-

tion, policy gradient methods optimize the policy based on the gradient of the

performance objective with respect to the policy’s parameters. The performance

objective is defined as J(π) = E[R1|π] and represents the expected cumulative

discounted reward from the start state when following policy π.

For deterministic policies the policy gradient has an appealing form: it is the

expectation of the action-value function’s gradient. More specifically, given a

differentiable action-value function Qµ for a deterministic parameterized policy

µθ, we can improve the policy by updating its parameters in proportion to the

gradient ∇θQ
µ(s, µθ(s)). The deterministic policy gradient theorem [45] states

that the gradient of the performance objective ∇θJ is the expectation of the

gradient ∇θQ
µ:

∇θJ(µθ) = Es∼ρµ
[
∇θQ

µ(s, µθ(s))] (2.14)

= Es∼ρµ
[
∇θµθ(s)∇aQ

µ(s, a)|a=µθ(s)
]
, (2.15)
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where ρµ denotes the discounted state visitation distribution and equation 2.15

can be derived by applying the chain rule to equation 2.14. Silver et al. [45]

have also shown that above equality holds approximately for a state visitation

distribution ρβ from a behavior policy β. Thus, this expectation can be estimated

off-policy with samples produced by a policy distinct to the optimized one.

2.2.4 Deterministic Actor-Critic

Actor-critic methods combine temporal difference learning and policy gradient

methods. The actor is a parameterized policy that has to be optimized. The critic

is the action-value function of the actor and is learned with temporal difference

learning. The parameters of the actor get optimized with respect to the critic.

So we use samples from a policy to learn a action-value function and then use

these samples and the action-value function to optimize the actor.

For deterministic policies we can use the off-policy deterministic actor-critic al-

gorithm [45]. This algorithm updates policy µθ in the direction of the off-policy

deterministic policy gradient, which is given in equation 2.15 when a different

policy is used to generate the samples. For the critic we replace the true action-

value function of the policy with a parameterized differentiable approximation

Qw ≈ Qµ. The critic is learned with off-policy temporal difference learning based

on equation 2.13 with trajectories generated by a behavior policy β. The param-

eter updates for actor and critic can now be compute as follows:

δt = rt + γQw(st+1, µθ(st+1))−Qw(st, at) (2.16)

wt+1 = wt + αwδt∇wQw(st, at) (2.17)

θt+1 = θt + αθ∇θµθ(st)∇aQw(st, a)|a=µ(st) (2.18)

2.2.5 Deep Deterministic Policy Gradient

In this section, we describe how neural networks can be used to approximate

actor and critic in the algorithm described in the section above. The use of

neural networks enables us to train complex policies that generalize well in large

state and action spaces. However, deep neural networks use non-linear activation

functions, thus convergence is no longer guaranteed. In the following, we describe
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how Lillicrap et al. [29] modified the off-policy deterministic actor-critic algorithm

to allow the use of neural networks as function approximators for the actor and

the critic.

Most optimization algorithms for neural networks, such as stochastic gradient

descent, assume the training samples to be independently and identically dis-

tributed [4]. This is not the case when the samples are generated sequentially

by exploring the environment and training is done online. Furthermore, it is

common to learn in mini-batches to improve efficiency of learning. Mnih et al.

[35] tackled this problem by employing experience replay [30]. With experience

replay, a replay buffer R is used, which is a first-in and first-out queue with a

fixed size to store tuples of previously experienced transitions (st, at, rt, st+1). In-

stead of learning online, at each training step both the actor and the critic are

trained on a mini-batch that has been sampled uniformly from the replay buffer.

Sampling from a large replay buffer allows the networks to learn across a set of

uncorrelated experiences.

Implementing the training of the critic directly from equation 2.17 with neural

networks can be particularly unstable. The network Qw(s, a) that is being up-

dated is also used to compute the action-value in the next state Qw(st+1, µθ(st+1))

when calculating the temporal difference error in equation 2.16. The problem is

that an update that increases Qw(s, a) often also increases Qw(st+1, µθ(st+1)) and

hence the temporal difference error would not increase, which possibly leads to

divergence [35].

The solution proposed by Lillicrap et al. [29] is to perform ‘soft’ updates of target

actor and critic networks, in contrast to doing a copy the weights after a fixed

number of steps as done by Mnih et al. [35]. Therefore, we create copies of the

actor and the critic networks, µ′θ′(s) and Q′w′(s, a) respectively. These networks

are specifically used to calculate the target value in the temporal difference error:

δt = rt + γQ′w′(st+1, µ
′
θ′(st+1))−Qw(st, at) (2.19)

However, when training neural networks it is more common to specify a loss

function which then is differentiated by the learning framework to compute the

gradients with respect to the parameters. Thus, we consider the training of

the action-value function as a regression problem, where the mean squared error
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between the prediction and a target value is most common as a loss function:

L(w) = Est,at,rt,st+1∼U(R)[(yt −Qw(st, at))
2] (2.20)

where the target value is based on the temporal-difference target, as given in

equation 2.13 and uses the target networks to avoid divergence:

yt = rt + γQ′w′(st+1, µ
′
θ′(st+1)) (2.21)

The critic’s neural network can now be updated by minimizing the loss function

in equation 2.20, where the expectation can be computed by sampling transitions

uniformly from the replay buffer. Analogously, the actor’s network is updated by

sampling transitions and minimizing L(θ) = −Es∼ρµ
[
Qw(s, µθ(s))].

After updating the actor and the critic, the target networks are ‘softly’ updated

as follows: θ′ ← τθ + (1 − τ)θ′ with τ � 1, w is updated analogously. In this

way, the target values are constrained to change slowly, which leads to greater

stability of learning. One could argue that soft updates slow down learning, but

Lillicrap et al. [29] found that the induced stability of learning greatly outweighs

any other potential disadvantages.

With these modifications Lillicrap et al. [29] were able to successfully train poli-

cies for various environments with high-dimensional state and action spaces with

an algorithm they call deep deterministic policy gradients (DDPG). The full al-

gorithm is given in Algorithm 1 in the appendix.

2.3 Multi-Agent Reinforcement Learning

In standard RL as described in the last section, we have a single learning agent

in a stationary environment. Multi-agent reinforcement learning (MARL), in

contrast, considers multiple-agent in the same environment that optimize their

policies through RL. This can lead to non-stationary environments as the behavior

of other agents changes over time. Therefore, acquired knowledge from past

experiences can become obsolete when the policy of the other agents changes.

In the simple two-player game rock-paper-scissors, for example, the optimal policy

depends heavily on the policy of the other agent. If the other agent always play

scissors, the optimal policy would be to play rock. But when the other agent
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changes its policy, to always play paper, our policy that was optimal becomes

the worst possible policy. These kinds of considerations are part of game theory,

where the central concern is to find an equilibrium point where no agent wants

to change its policy.

While rock-paper-scissors is a competitive game, we focus on cooperative games,

where all agents have the same goal, because in these cases agents are most

incentivized to cooperate. While the agents are not adversarial in cooperative

games, they still change their policies to achieve the common goal which can

lead to non-stationary environments. For example, when two cars that drive in

opposite directions on the same road have to coordinate to avoid a collision, a

change in policies can lead to worse performance for both agents. Therefore, the

main goal for cooperative MARL is to coordinate the actions of the agents, while

it is not necessary for the agents to consider adversarial actions of other agents.

In the next sections, we first introduce the decentralized Markov decision processes

as a theoretical framework for cooperative MARL. After that we describe, how

we can apply single-agent methods to multi-agent environments which serves as a

baseline for multi-agent algorithms. Then, we describe an extension of the DDPG

algorithm to enable it to cope with multi-agent environments, which includes

modeling other agents.

2.3.1 Decentralized Markov Decision Processes

We model the interactions of multiple agents in a potentially stochastic envi-

ronment as a decentralized Markov decision process (Dec-MDP), which is a spe-

cial case of the decentralized partially observable Markov decision process (Dec-

POMDP), where the observations of all agents jointly identify the true state of

the environment [6]. This is the motivation for the use of communication for

problems in this class. Agents that learn to communicate necessary information

about their own observations, may be able to solve the problem without depend-

ing on the history of their observations, which is a common way to deal with

partial observability.

An example for a Dec-MDP is a team of robots, where the state consists of the

locations of all robots and each robot knows its position perfectly [24]. Therefore,

the observations of all agents together can determine the state of the environment.
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However, each agent still only partially observes the full state. Bernstein et al. [6]

have shown that the worst-case complexity of finding an optimal policy for Dec-

MDPs is in the same as of Dec-POMDPs. This implies that distributed control

and not only hidden states make these problems hard to solve.

More formally, a Dec-MDP is defined as follows: n agents interact with the

environment in discrete time-steps, the state space of the environment is s ∈
S, the joint action space of the agents is A = A1 × Ai × · · · × An and O =

O1 × Oi × · · · × On is the joint observation space, for which exists a function

J : O → S with J(o1, . . . , on) = s. Each agent selects an action ai ∈ Ai and the

joint action a = (a1, . . . , an) causes the environment to transition from s to the

next state s′ with probability p(s′|s,a). At each time-step each agent receives a

private observation oi ∈ Oi with joint probability o(o|s,a). Let (oi,1, . . . , oi,t) ∈
Hi,t be the observation history of agent i at time-step t. The behavior of each

agent is then modeled with a policy µi : Hi,t → Ai that maps from the history

of observations of an agent to its actions and the joint policy is denoted µ =

(µ1, . . . , µn). The group of agents receives a joint reward rt = r(st,at) and the

joint return is Rt =
∑T

k=t γ
k−tr(sk,ak), with T being the time horizon of the

task.

As for single-agent MDPs (cf. Section 2.2.1) we can define value functions that

represent the expected cumulative discounted future reward or return when joint

policy µ is followed. The state-value function for Dec-MDPs is defined as:

V µ(s) = Eµ[Rt|st = s] (2.22)

and the action-value function is:

Qµ(s,a) = Eµ[Rt|st = s,at = a] (2.23)

There are different approaches on how to learn action-value functions in multi-

agent environments. As described in the next section, some algorithms only use

an agent’s own actions while others assume that every agent has access to the

joint-actions.

2.3.2 Independent and Joint-Action Learning

For fully cooperative settings, Claus and Boutilier [9] pointed out that there are

two distinct ways to learn action-values for multiple agents. They refer to the
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two classes of agents as independent learners and joint-action learners.

Independent learners only learn action-values for their own actions, based on

equation 2.13. Thus, these agents learn action-values without regard to actions

of other agents. This is a very scalable approach, because the computational

complexity is independent of the number of agents in the environment. However,

learning action-values in this way assumes a stationary environment which is not

the case here. Therefore, a convergence of learning is not guaranteed.

Joint-action learners learn action-values for joint-actions in contrast to individual

actions. Thus, they learn the joint action-value function, as given in equation 2.23.

However, this approach implies that each agents observes the actions the other

agents have chosen, which is a strong assumption for partially observed domains.

In addition, the approach is not as scalable as independent learners as the input

for the action-value function grows linearly with the number of agents.

Both classes of agents are supported by Dec-MDPs, which we use to model the

environment. The definition of Dec-MDPs only states that every agent receives

a potentially partial observation of the environment. In Section 3.1 of the next

chapter, we describe how we model the uncertainty about the observations and

actions of other agents directly.

2.3.3 Centralized Training and Decentralized Execution

A lot of recently proposed algorithms for learning to cooperate and communicate

in multi-agent settings [10, 50, 31], rely on a paradigm called centralized training

and decentralized execution. This paradigm was first introduced by Kraemer and

Banerjee [24]. They allow learning agents to access otherwise hidden information

during the learning process, which will then not be available when executing the

learned policy. This procedure is not applicable to all real-world problems, but

Kraemer and Banerjee [24], for example, describe a scenario in which robots are

trained in a lab setting and are connected to a central computer that has complete

observability of the whole environment (e.g. with a overhead camera). Therefore,

in this framework it is possible to use a joint-action learner in the training phase,

as long as the learned policy does not depend on the joint-actions.
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There are also other ways to make use of a centralized training. There is some re-

cent work, for example, that uses differentiable communication channels between

the agents during training [10, 50], such that the agents are able to exchange

error signal with respect to their communication. To achieve this the communi-

cation during training must be continuous to be differentiable, but it is possible

to discretize the communication at execution time, as done in [10].

2.3.4 Multi-Agent DDPG

In this thesis, we examine and extend the multi-agent deep deterministic policy

gradient (MADDPG) [31] algorithm, which is an extension of DDPG to the multi-

agent domain. In the following, we describe the original method, while we discuss

our adaptions in the next chapter. The full MADDPG algorithm is given in

Algorithm 2 in the appendix.

MADDPG makes use of centralized training with decentralized execution. Their

proposed actor-critic algorithm uses the joint action-value function as a critic to

learn a policy that only depends on the agent’s private observations. Therefore,

while training the agents, we assume that it is possible to violate the assumption

of Dec-MDPs that agents only have knowledge of their own observations and

chosen actions (cf. Section 2.3.1).

More specifically, for a game with n agents, MADDPG uses local policies µ =

{µ1, . . . , µn} that are parameterized by θ = {θ1, . . . , θn} and a centralized action-

value function Qi(o,a) ≈ Qµ(s,a) for each agent which are parameterized by

w = {w1, . . . , wn}. For brevity, we drop the parameters from the policies and

action-values functions in the subscript, so µi = µθi and Qi = Qwi . Each central-

ized action-value function takes the actions and observations of all agents as input

and outputs the action-value for agent i. Thus, we train a separate action-value

function for each agent. Now, we extend equation 2.15 for the multi-agent case:

∇θiJ = Eo,a∼ρβ
[
∇θiµi(oi)∇aiQi(o,a−i, ai)|ai=µi(oi)

]
, (2.24)

where o = (o1, . . . , on), a = (a1, . . . , an), a−i = a \ {ai} and β is a stochastic

behavior policy to generate the training samples to ensure sufficient exploration

of the environment. The centralized action-value functions can be learned by

minimizing the following loss function, which is an extension of equation 2.20 for
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the multi-agent case:

L(wi) = Eot,a,ri,ot+1∼U(R)

[
(yt −Qi(ot,a))2

]
(2.25)

and the target value is:

yt = rt + γQ′i(ot+1,a
′)|a′j=µ′j(oj,t+1) (2.26)

where µ′ = {µ′1, . . . , µ′n} is a set of target policies whose parameters are softly

updated with the parameters of the current policies to stabilize training. The

expectation of the loss is computed with samples from a replay buffer R that

contains tuples (ot,a, rt,ot+1), which represent the observations, actions and re-

ceived rewards of all agents in a transition from state st to st+1.

2.3.5 Modeling Other Agents

To train the critic, each agent requires the policies of all other agents to compute

the temporal-difference target as described in equation 2.26. This is a very strong

assumption even if we assume that additional information can be used, because

policy representation can be very large and therefore it might be unfeasible for the

agents to transfer them to other agents due to a limited bandwidth and therefore

a training on the same machine is required. To remove the dependency on other

agents’ policies Lowe et al. [31] suggest that each agent i can maintain a model

µ̂φji
of each other agent. Here, φji denotes the parameters maintained by agent i,

which parameterize the model of agent j. For simplicity we drop the parameter

subscript and write µ̂ji = µ̂φji
. The models are trained with maximum likeli-

hood estimation, by minimizing the negative log-likelihood of a parameterized

probability distribution which is parameterized by φji :

L(φji ) = −Eoj ,aj
[

log µ̂ji (aj|oj) + λH(µ̂ji )
]
, (2.27)

where H is the entropy of the model’s probability distribution and the second

term serves as an entropy regularizer to prevent overfitting of the latest data. The

models are used to replace the use of real policies in equation 2.26, by predicting

the next action using the probability distribution. Then, the temporal difference

target yt can be computed as follows:

yt = rt + γQ′i(ot+1, µ̂
1
i (o1,t+1), . . . , µ

′
i(oi,t+1), . . . , µ̂

n
i (on,t+1)) (2.28)
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Thus, when training the action-value function of agent i we use the target policy

network of this agent and the agent model for all other agents. While Lowe et al.

[31] suggested to use target networks for the modeled policies as well, we found

that there is no significant advantage in using target networks for modeled agents.

Furthermore, Lowe et al. [31] propose to train the models online, by minimizing

the loss in equation 2.27 using stochastic gradient descent using the most recent

observations and actions, before updating the actor and the critic in each training

step.





Chapter 3

Problem and Approach

The goal of this thesis is to evaluate how multiple agents can learn to solve tasks

in a decentralized setting. In particular, we are interested in how much infor-

mation about other agents is required to successfully solve a task in a team. In

Section 2.3.2, we described the distinction between joint-action learners that have

full knowledge about the other agents and independent learners that only have

access to their own actions and observations. Having full access to other agents’

observations and actions is a very strong assumption in decentralized environ-

ments with partial observability. It is also not realistic in most scenarios that

each agent is not aware at all of the other agents in the environment. We there-

fore propose to model the observability of other agents directly, which enables us

to test the dependency of the learning procedure on the knowledge about other

agents by simulating different degrees of partial observability.

In the last chapter, we have described the MADDPG algorithm as a multi-agent

extension of DDPG. MADDPG assumes full access to observations and actions

of other agents as well as their policies, while there is the possibility to model the

policies of other agents. In this chapter, we introduce an extension of MADDPG

to deal with partial observability of other agents using recurrent neural networks.

The remainder of this chapter is structured as follows: First, we describe how we

explicitly model the partial observability of other agents’ observations and actions.

Then, we introduce Rec-MADDPG as an extension of MADDPG motivated by

the partial observability of other agents. Finally, we describe the environments in

which we conduct our experiments and how we use them to test different aspects

of the algorithms.

23
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3.1 Partial Observability of Other Agents

The Dec-MDP model, which we introduced in Section 2.3.1, models the observa-

tions oi ∈ Oi each agent receives with a joint probability distribution o(o|s,a).

This probability distribution is different for each environment and thus the ob-

servability of other agents’ actions and observations depends on the environment.

However, we would like to model the uncertainty about actions and observations

of other agents explicitly. Therefore, similar to [41], we assume that each agent

makes potentially noisy observations of other agents’ trajectories, modeled with

probability distributions over the observed observations ω(o
(obs)
−i |o) and observed

actions α(a
(obs)
−i |a) of the other agents1.

The information for one state transition that agent i is able to use to optimize

its policy are now: (o
(i)
t ,o

(obs)
t , a

(i)
t ,a

(obs)
t , rt, o

(i)
t+1,o

(obs)
t+1 ), where o

(i)
t , o

(i)
t+1 and a

(i)
t

are the original observations and chosen actions of agent i respectively. The

observations of the other agents’ observations and actions are drawn from o
(obs)
t ∼

ω(ot), o
(obs)
t+1 ∼ ω(ot+1) and a

(obs)
t ∼ α(at).

In our experiments, we use a Gaussian distribution to simulate the uncertainty

about observations of other agents: ω(o
(obs)
−i |o) = N (o

(obs)
−i |o, σ2) and a Gumbel-

Softmax distribution [22, 32] to introduce uncertainty about the chosen actions

α(a
(obs)
−i |a) = Gumbel-Softmax(a

(obs)
−i |a, τ). The Gumbel-Softmax distribution

is a continuous distribution that can approximate samples from a categorical

distribution. In this way, we can gradually increase the uncertainty by increasing

the standard distribution σ of the Gaussian distribution and the temperature τ of

the Gumbel-Softmax distribution (increasing τ leads to more uniform samples).

Thus, we are able to test how much the performance of different algorithms

decreases when we increase the noise-level step by step.

The Gumbel-Softmax distribution is utilized to add noise to the actions, because

the observed actions are used as targets when train the models of other agents

and the actions are computed with the softmax function and have to sum to one.

Therefore, we decided to sample noisy actions in a way in which they are still

valid actions, which would not be the case when adding Gaussian noise.

1For better readability we drop the subscript −i in the following, which denotes that these
are the observations or actions of all other agents without agent i.
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3.2 Recurrent Multi-Agent DDPG

In this section, we propose an extension of the MADDPG algorithm to use re-

current neural networks as critics to deal with the partial observability of other

agents’ actions and observations. As described in the section above, we assume

a partial observability of the other agents while the observations of all agents

together determine the state of the environment (cf. Section 2.3.1). This moti-

vates the use of communication between agents to share necessary information

enabling them to successfully complete the task.

The MADDPG algorithm, which has been described in Section 2.3.4, has been

shown to enable agents to learn to cooperate and communicate [31]. However,

this method assumes full access to the observations and actions of all other agents.

Therefore, we want to extend the method to be able to work with partial obser-

vations of other agents. Hausknecht and Stone [15] have proposed deep recurrent

Q-networks to address partial observability in single-agent settings. Instead of

using feedforward networks to approximate the action-value function they use

recurrent neural networks, which maintain an internal state and aggregate the

observations over time. This approach has also been applied to actor-critic sys-

tems [17] for continuous control and to learn action-value functions in partial

observable multi-agent settings [39] and learning to communicate [13].

To address the partial observability of the other agents’ actions and observations

we therefore propose to use deep recurrent neural networks to approximate the

critics. This enables the estimation of action-values based on the history of ob-

served actions and observations. We still use feedforward networks for the actors,

because we assume a jointly observable state and that agents can exchange all

necessary information in each step.

In the following, we describe the adaptions we have made to enable the MADDPG

method to make use of recurrent critic networks. These include a replay buffer

that stores episodes of transitions for each agent, recurrent critic networks and a

modified training procedure that addresses learning with mini-batches of episodes.
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3.2.1 Episodic Replay Buffer

In a single agent scenario, the replay buffer stores past transitions, consisting of

observations, the chosen action and the received reward of one agent [30, 35] (cf.

Section 2.2.5). For the training of critic networks with MADDPG each agent

requires the transition data of all agents to train its networks. Since a centralized

training is assumed anyway, a central replay buffer is used that stores transitions

as tuples (ot,a, rt,ot+1), which include the observations and actions of all agents.

We aim for a decentralized setting where each agent has only partial observability

of the observations and actions of other agents. Hence, we maintain a replay buffer

Ri for each agent with transitions (o
(i)
t ,o

(obs)
t , a

(i)
t ,a

(obs)
t , rt, o

(i)
t+1,o

(obs)
t+1 ), which dis-

tinguish between own observations and actions and the data from other agents.

Learning recurrent neural networks for the critics, necessitates sequential samples

of transitions in each training step. Therefore, the transitions are stored along the

axes episode and time-step. Thus, each agent stores the transitions sequentially

along the time-step axis for each episode. After each episode a new sequence is

started along the episode axis and if the capacity of the replay buffer is reached

the first added episodes are removed in a first-in first-out manner. The sequences

along the time-step axis can have varying length. However, we zero-pad all se-

quences to the maximal episode length, because this enables the usage of efficient

optimizer implementations in standard deep learning libraries.

This replay buffer definition is similar to how Omidshafiei et al. [39] structured

their Concurrent Experience Replay Trajectories to train recurrent Q-networks for

multiple agents. However, they assume a fully decentralized setting where other

agents are not observable. Therefore, they require that the training samples of

private observations and actions are drawn concurrently from the local replay

buffers, which means that the same time-steps in the same episodes are used. In

this way, local policy updates are correlated and the agents tend to converge to

the same equilibrium if there are multiple ones. To achieve this, synchronization

of the agents’ sampling methods is required. However, this is not possible for

every scenario, for example when humans are involved. Since we assume partial

observability of other agents, local policy updates are correlated because they are

optimized based on partial observations about other agents, which are correlated

with the real observations and actions. Therefore, each agent can update its

networks independently.
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3.2.2 Recurrent Critic Networks

To cope with partial observability of other agents, each agent maintains a deep

recurrent critic network, which enables the critic to predict action-values based on

the history of observed actions and observations. The recurrent neural network

approximates the true action-value function of the current joint policy:

Qi(o
(i)
t ,o

(obs)
t , a

(i)
t ,a

(obs)
t , h

(i)
t−1) ≈ Qµ(st,at), (3.1)

where h
(i)
t−1 is the hidden state of the recurrent network at the previous time-step,

o
(i)
t and a

(i)
t are the local observations and action, while o

(obs)
t , a

(i)
t and a

(obs)
t are

the observed actions and observations of other agents. If t = 1, an initial value for

ht−1 is used that is learned by the optimization procedure. We found that using

learned initial hidden states leads to a much better performance, than using zero

vectors as initial hidden states. Furthermore, we use long short-term memory

(LSTM) networks [21] to make the critic recurrent (cf. Section 2.1.2), as these

kind of networks is able to learn long-term dependencies and has been successfully

applied in other partial observable reinforcement learning settings [15, 17, 39].

3.2.3 Training Algorithm

In the following, we describe the Rec-MADDPG training algorithm for agents

with recurrent critic networks and the full algorithm is given in Algorithm 3 in

the appendix. Each agent i maintains a local policy µi(o
(i)) parameterized with

θi and an action value function Qi(·) parameterized by wi, which is based on local

observations and actions as well as partially observed observations and actions

from other agents, as described in the last section. Furthermore, each agents

also maintains parameters θ′i and w′i for the actor and critic respectively. In

order to compute the temporal difference target, predicting other agents’ actions

is necessary, because we do not assume access to the policies of other agents.

Therefore, an agent models the other agents’ behavior with a policy representation

µ̂ji that is parameterized by φji . In addition, each agent stores its experiences and

the observed experiences of other agents in a episodic replay buffer Ri.

To train actor and critic networks, each agent samples episodes from the local

episodic replay buffer. We decided to train the recurrent networks on complete

episodes instead of partial trajectories, because in this way the hidden state is
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always initialized at the beginning of the episode in contrast to random starting

points, when using smaller subsets of an episode [15]. Thus, in every training step

an agent i samples a mini-batch B consisting of B episodes, B = {E1, . . . , EB},
from Ri, where one episode is a sequence of state-action-reward tuples:

Eb =
(
(o

(i)
1 ,o

(obs)
1 , a

(i)
1 ,a

(obs)
1 , r1, . . . ,

(o
(i)
T ,o

(obs)
T , a

(i)
T ,a

(obs)
T , rT )

)
,

(3.2)

with T being the number of the episode’s final step. Each episode Eb is used to

compute a sequence of target values (yb1, . . . , y
b
T ), where each target is computed

as follows:

ybt = rbt + γQ′i(o
(i)
t+1,o

(obs)
t+1 ,a

′, h
(i)
t ),

with a′j =

µ′i(oi,t+1) if j = i

µ̂ji (o
(obs)
j,t+1) else

(3.3)

where the hidden state of the previous step in the episode is used or a learned

initial hidden state if t = 1. The target is computed with target networks µ′i and

Q′i of actor and critic respectively to stabilize the updates. Furthermore, actions

for the action-value of the next state are predicted using either learned models of

the other agents µ̂ji or the target network for the agent’s own action. Based on

the sequence of target values a sequence of temporal difference errors (δb1, . . . , δ
b
T )

is calculated for each episode, with:

δbt = ybt −Qi(o
(i)
t ,o

(obs)
t , a

(i)
t ,a

(obs)
t , h

(i)
t−1), (3.4)

where again the hidden state is carried forward throughout the episode. Given

the sequences of temporal difference errors for all episodes of the mini-batch, we

can compute the loss that is minimized with gradient descent to learn the critic

networks:

L(wi) = EEb∼U(Ri)

[
(δbt )

2
]

(3.5)

Thus, the loss function for the critic networks is the mean squared error between

the predictions of the critic network and the temporal difference targets. The

policy network’s parameters are trained by gradient ascend on the policy gradient

for agent i:

∇θiJ = EEb∼U(Ri)

[
∇θiµi(o

(i)
t )∇aiQi(o

(i)
t ,o

(obs)
t , µi(o

(i)
t ),a

(obs)
t , h

(i)
t−1)
]
, (3.6)
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where sequences of action-values Qi(·) are computed for each episode, with re-

placing the chosen actions for agent i with the actions chosen by the current

policy ai = µi(o
(i)
t ) and also carrying forward the hidden state throughout the

episode as for the critic networks.

We found that doing multiple training steps for the models for each training step

of actor and critic as well as including transitions from recent time-steps, was more

stable than learning the models completely online, as suggested by Lowe et al.

[31]. Therefore, the models are learned with experiences collected to train actor

and critic. Before conducting the training steps of actor and critic, we sample

multiple mini-batches from recent transitions in the replay buffer, in contrast to

episodes for actor and critic. Where recent means that only transitions from the

last p time-steps are considered, where usually p � size(R). This is especially

beneficial when the observations of other agents are noisy. In this case, multiple

training examples from a limited past seem to reduce the noise in the gradient

to train the probability distribution of the model. We adapt equation 2.27 as

follows:

L(φji ) = −E
a
(obs)
j ,o

(obs)
j ∼U(Rpi )

[
log µ̂ji (a

(obs)
j |o(obs)j ) + λH(µ̂ji )

]
(3.7)

So now the model of agent j is learned based on the partially observed observa-

tions o
(obs)
j and actions a

(obs)
j that are sampled from Rp

i , which is agent i’s replay

buffer Ri limited to the most recent p transitions.

3.3 Cooperative Environments

For our experiments, we use two cooperative versions of the physically-simulated

two-dimensional environment that was used for the experiments to evaluate MAD-

DPG and was proposed by Mordatch and Abbeel [36]. Every environment con-

sists of n agents and l landmarks, in a two-dimensional world with continuous

space and discrete time. Landmarks can have descriptive characteristics such as

a certain color, which are observable by agents. Each agent can move around

the environment by taking continuous actions representing the acceleration. In

some environments, agents are able to communicate by uttering symbols that are

broadcasted and represented as one-hot encodings. The symbols have no prede-

fined meaning, thus the agents can assign arbitrary concepts to symbols during



30 Chapter 3. Problem and Approach

the learning process. As we only use the cooperative subset of the environments,

all agents receive the same reward signal.

Every task in these environments includes target landmarks that have to be cov-

ered by agents. The task differ in the number of agents and targets as well as the

observability of which landmark is the target. Each agent receives private obser-

vations that are different for each agent, thus there is a partial observability of the

environment. Nevertheless, since we adopt a Dec-MDP model, all observations

together determine the state of the environment.

The original environments, as used in [36, 31], were not goal-based but had a

shaped reward for a certain goal. We modified the environments to have a set of

terminating states, such that an episode ends when the desired state is reached,

i.e. the task has been accomplished. We experimented with sparse rewards of 1

for reaching the goal and 0 in all other cases. Training in these environments

turned out to difficult, because agents have to do a lot of exploration before

receiving a positive reward. Therefore, we decided to keep the shaped rewards

for each task, which is always based on the distance to the target locations, with

sometimes including a penalty for collisions of agents. We noticed that the agents

often come close to the target location, but not close enough to be in a terminal

state. Similar, observations have been made by Lowe et al. [31], during their

experiments with MADDPG. Because we believed that the reason is that the

action-value gradients were too little close to the target location, we added a

bonus reward for reaching the target area. This indeed solved the problem and

we were able to consistently reach success-rates of 100%, as opposed to success

rates with a high variance and a mean of approximately 75% before.

In the following, we describe the two environments that we use. While the first

is more focused on the aspect of communication, the second focuses more on

cooperation between agents.

3.3.1 Cooperative Communication

This environment contains two agents of which, in the basic task, one is the

“speaker” and the other the “listener” (as illustrated in Figure 3.1a). Of these

agents only the speaker knows the target location to which the listener has to
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(a) Cooperative communication environ-

ment. The three smaller colored dots are

landmarks. The grey larger dot is the speaker

agent and the larger colored dot is the lis-

tener, the color matches the color of the tar-

get landmark for visualization purposes.

(b) Cooperative navigation environment.

The three smaller dots are landmarks and

the three larger dots are agents that have

to cover all three landmarks.

Figure 3.1: Schematic illustrations of the two environments used for our experiments.

move. The speaker agent (grey in the figure) is not able to move but can commu-

nicate and its only observation is the color of the target landmark. The listener

agent (blue in the figure, which represents its target) can move but cannot com-

municate and observes its velocity vector, the relative landmark positions and

the symbols send by the speaker. The task is episodic and ends after 25 steps or

when the listener reached the target landmark. This is the case when it is within

distance ε to the center of the target landmark. The reward is the negative dis-

tance between the listener and the target landmark and a bonus reward of 10 is

given for reaching the target.

In a more complex version of this task, both agents are speaker and listener at

the same time. Thus, each agent knows the target of the other agent and both

are able to move and communicate. In addition to the target color of the other

agent, the observations of each agent are the same as of the listener described

above. Both agents have to reach their target landmarks to successfully finish

the task. The reward is the sum of the negative distances of each agent to its

target location and a bonus reward of 10 for reaching the goal.

We refer to the first described task as speaker-listener and the second as reference.

Both of these task require communication to successfully finish the task, as only
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the other agents knows the target locations. Without this knowledge, the agents

only can head to a random landmark and thus cannot not achieve a success rate

of 100% over multiple runs.

3.3.2 Cooperative Navigation

This environment contains three landmarks and three agents whose task is to

cover all three landmarks, while avoiding collisions (as illustrated in Figure 3.1b).

All agents receive the same type of observations: their velocity vector, the relative

landmark positions and the communication. In the original environment, used

in the experiments in [31], the agents observed the positions of the other agents

as well. We removed these observations and added the ability to communicate

instead. In this way, this environment becomes partially observable for each agent

and the agents are required to communicate to coordinate their actions.

The reward is the negative of the sum of the minimal distance for each landmark

to any agent, therefore there is the incentive that each agent is as close as possible

to a distinct landmark. In addition, there is a penalty of -1 for every time two

agents collide and a bonus of 10 for fulfilling the task. An episode ends after 25

steps or when all landmarks are covered. This environment tests if the agents are

able to coordinate through communication, such that they do not move towards

the same landmark at the same time.



Chapter 4

Experiments

With our experiments, we want to assess the effect of partial observability of

other agents’ observations and actions on the ability of the MADDPG and Rec-

MADDPg algorithms to train agents that are able to cooperate. All our experi-

ments are conducted in the cooperative physical environments we have introduced

in Section 3.3.

To simulate partial observability of the the agents, we add noise to the obser-

vations and actions, as described in Section 3.1. For the observations we add

Gaussian noise, where we can vary the standard deviation σ to simulate different

levels of uncertainty and for the actions we us the Gumbel-Softmax distribution,

where we can vary the temperature τ . In the experiments, we vary σ and τ

separately to be able to assess the influence of uncertainty about the actions and

observations independently.

We describe the details of our implementation of the different algorithm in the

next section, to allow for reproducibility of our results. After that, we describe

how we evaluate the different algorithms and finally present and discuss the results

of the experiments.

33
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4.1 Implementation Details

We have implemented both MADDPG and Rec-MADDPG in PyTorch and the

environments are implemented using the OpenAI gym [7] framework1. The imple-

mentations of both algorithms directly follow the implementation of Lowe et al.

[31] and the environments are a modification version of the implementation of the

environments introduced by Mordatch and Abbeel [36] provided by OpenAI2. In

the following, we describe the most important details of our implementation.

Our feedforward policy and critic networks consist of 3 layers with 64 units each.

The critic networks have one output unit that predict the action values for the

given observations and actions. For the recurrent critic we replace the second

layer with a LSTM layer with 64 memory units, such that there is one fully

connected layer before the LSTM and one layer afterwards that computes the

action value. The policy networks take the observations of an agent and output

logits which are passed to a probability distribution. For all hidden layers we use

ReLU activation functions, but for the LSTM tanh and sigmoid activations are

used [21].

Following the reference implementation of MADDPG from Lowe et al. [31], we

use the Gumbel-Softmax distribution [22, 32] as a differentiable approximation of

the categorical distribution. For deterministic actions we take the action proba-

bilities, which is are the softmax values of the logits. Throughout the experiments

we use a temperature of τ = 1 for the Gumbel-Softmax distribution.

In the experiments we use a discount factor of γ = 0.95. For every training run,

we do 1.5 million simulation steps and train the agents every 100 steps. At every

training step the networks are optimized using Adam [23] with base learning rates

0.01 and 0.001 for critic and actor respectively. The target network parameters

are updated with a rate of τ = 0.01. We use a replay buffer size of 1 million

transitions or 50,000 episodes. The mini-batches sampled from the replay buffers

have a size of 1024 and 256 for transitions and episodes respectively.

The agent models use the same network architecture as the actors and are also

1Our implementation of MADDPG and Rec-MADDPG: https://github.com/nicoring/
rec-maddpg, implementation of the environments: https://github.com/nicoring/

multiagent-particle-envs
2Reference implementation of MADDPG: https://github.com/openai/maddpg and code

of the original environments: https://github.com/openai/multiagent-particle-envs

https://github.com/nicoring/rec-maddpg
https://github.com/nicoring/rec-maddpg
https://github.com/nicoring/multiagent-particle-envs
https://github.com/nicoring/multiagent-particle-envs
https://github.com/openai/maddpg
https://github.com/openai/multiagent-particle-envs
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trained with Adam with a base learning rate of 0.0001. For every training step

of actor and critic the models are optimized for 20 steps on mini-batches of 64

transitions sampled from the most recent 5000 transitions.

4.2 Evaluation Metrics

We evaluate the performance of the agents based on the received cumulative

reward at the end of the episode and the success rate of reaching a goal over

multiple evaluation runs. For both reward and success rate we are interested

how they develop over time during training, which shows how fast the different

approaches reach an optimal or good solution. In addition, we are interested in

the final performance of the methods after a fixed number of training steps.

We use a stochastic behavior policy during training to ensure sufficient explo-

ration, but learn a deterministic policy. Therefore, to evaluate the performance

of the trained policy, we run 50 evaluation episodes every 1000 training steps.

The reported reward is then the average final reward over these 50 evaluation

runs and the success rate is the fractions of these runs that were successful.

Since reinforcement learning includes a lot of randomness, due to exploration

and stochastic environments, the performance can vary a lot between different

runs. Therefore, we average our results over 10 runs with different random seeds

and determine the confidence interval of the real mean of the performance with

bootstrapping3 and determine if performances are significantly different with 2-

sample unequal variances t-tests4, as proposed in [19].

4.3 Results

In this section, we present the results of the experiments we have conducted. We

wanted to assess how much partial observability impairs the MADDPG method

and test if we can improve the performance with Rec-MADDPG. All agents are

trained using our implementation, as described in Section 4.1. Adding noise to the

3Used bootstrapping implementation: https://github.com/facebookincubator/

bootstrapped
4Used t-test implementation from Scipy: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.stats.ttest_ind.html

https://github.com/facebookincubator/bootstrapped
https://github.com/facebookincubator/bootstrapped
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
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Figure 4.1: Learning curves for MADDPG on the left and Rec-MADDPG on the right

for the speaker-listener task, showing the success rates for different values of the

standard deviations for the observation noise.

observed actions and observations is tested separately to determine their impact

independently. We report the rewards and success rates throughout the training,

as discussed above. We first present the results from experiments in the coop-

erative communication environment and then the results from the cooperative

navigation environment. After that we compare the final achieved success-rates

and returns and analyze the predictions of the critic networks. We summarize

and discuss conclusions from these results in the next section.

4.3.1 Cooperative Communication

We first examine the speaker-listener task in the cooperative communication en-

vironment, see Section 3.3.1 for a detailed description. The difficulty in this task

is that the speaker, has to communicate the its private observation, the color of

the target landmark, and concurrently the listener has to learn to understand

the sent messages and move to the respective landmark. Independent learners,

such as DDPG, that do not have knowledge about the other agents, are not

able to solve this environment [31]. They only learn to move to the centroid

of all three landmarks, which minimizes the distance to all of them. Thus, al-

though, this task seems fairly simple, it has not been solved yet using traditional

single-agent reinforcement learning methods. Therefore, it is interesting to test

how much the performance decreases as we increase the noise-level, because if

the uncertainty about the other agents’ observations and actions is too high, the

MADDPG method is basically equivalent to DDPG.
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Figure 4.2: Learning curves for MADDPG on the left and Rec-MADDPG on the right

for the reference task, showing the reward for different values of the temperature for

the noise in observed actions.

Figure 4.1 compares the performance of MADDPG and Rec-MADDPG during

training for varying noise-levels for the observations of the other agents. We can

see that Rec-MADDPG converges faster to higher success rates for lower noise-

levels in general and is even able to reach success rates of 100% up to a certain

degree of uncertainty. However, it has worse success rates than MADDPG for

higher noise-levels at the end of the training.

While the performance of both algorithms decreased for increasing uncertainty

about other agents’ observations, we found that both algorithms are robust

against noise in the observed actions for this task (the results are given in Fig-

ure B.1). Both algorithms were able to achieve success rates of 100% for all

noise-levels, without significant differences in mean performance.

For the reference task, however, there were significant differences between MADDP

and Rec-MADDPG. As can be seen in Figure 4.2, the achieved reward of Rec-

MADDPG is rising similarly for different levels of uncertainty, while achieving

mean success rates around 70%, as shown in Figure B.2. For MADDPG, in

contrast, the reward decreases over time for all noise-levels and the success rate

does not exceed 0%. So it seems that using Rec-MADDPG poses a significant

advantage for this task if the actions of other agents are only observed partially.
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4.3.2 Cooperative Navigation

Next, we examine the ability of MADDPG and Rec-MADDPG to learn to co-

ordinate in the spread task, while only getting noisy observations of the other

agents to train the critic network. The difficulty in this task is that the agents

have to coordinate to which landmarks they go, while not observing where the

other agents are or which actions they take. Thus, to successfully complete the

task the agents need to communicate in order to coordinate their actions.
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Figure 4.3: Learning curves for Rec-MADDPG on the left and MADDPG on the right

for the cooperative navigation task. Both diagrams show the success rate for different

values of the standard deviation of the noise in observed observations of other agents.

First of all, we observed that even without partial observability agents never

consistently reached a success rate of 100% in the given training time. There-

fore, this task seems to be harder than the cooperative communication tasks.

When only partially observing other agents’ observations (see Figure 4.3), the

Rec-MADDPG algorithm is not able exceed success rates of 10%, in contrast to

MADDPG that achieves mean success rates of up to 40%. When analyzing the

learned policies of Rec-MADDPG more closely, we found that they sometimes

move towards separate landmarks but only rarely reach them and quite often

multiple agents move towards the same landmark.

Interestingly, when only the actions of other agents are partially observed, Rec-

MADDPG performs better than MADDPG. Rec-MADDPG is able to train poli-

cies that achieve success-rates of up to approximately 60%, as shown in Figure 4.4.

MADDP’s success-rates, in contrast, are close to 0% for noisy observed actions

throughout the whole training. Therefore, we think that Rec-MADDPG is able
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Figure 4.4: Learning curves for Rec-MADDPG on the left and MADDPG on the right

for the cooperative navigation task. Both diagrams show the success rate for different

values of the temperature for the noise in observed actions.

to infer the actions given the history of observation and noisy actions and thus

the recurrent critic poses an advantage in this scenario.

4.3.3 Comparison of Final Performance

After examining the learning curves of MADDPG and Rec-MADDPG for all

three tasks, we now compare the final performances across the tasks for different

noise-levels for the observed actions and observations. This enables us to make

more precise statement about which algorithms performed better for which task.

Additionally, we can see how the performance changes for increasing noise-levels.

In Figure 4.5, we show the mean success rates and 95% confidence intervals

for 10 runs. For the case of partial observability of actions of other agents, we

can clearly see that both algorithms solve the speaker-listener task perfectly for

all noise-levels and there are also no significant differences for in the returns

(cf. Figure B.3). None of the algorithms solves the reference or spread tasks

perfectly, but Rec-MADDPG is significantly better on the reference task than

MADDPG, which only achieves success rates of 0% for all noise-levels. Although

Rec-MADDPG does not achieve significantly higher success rates for the spread

task, the final mean returns for this task of Rec-MADDPG are significantly better

than of MADDPG (cf. Tables B.2 and B.4). Interestingly, there are no significant

differences in the performance of Rec-MADDPG when the noise increases. This

strengthens our assumption that Rec-MADDPG is able to infer the next action

based on the observation history.
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Figure 4.5: Final success rates achieved by MADDPG and Rec-MADDPG for different

environments and noise-levels. The line plots show the mean performance and the

bars represent the 95% confidence intervals. Significance values can be found in

Tables B.1 and B.2.

In case of partial observability of other agents’ observations, as shown on the

right in Figure 4.5, the picture is not as clear as for partially observed actions.

In our first experiment, it seemed to vary for different noise levels which of the

algorithms performs better on the speaker-listener task. Therefore, we conducted

a second experiment with more fine noise-levels. The results of this experiment

are shown in Figure 4.6 and p-values are reported in Table B.5. There we can

see that for σ ≤ 0.4 none of the algorithms is significantly better. For σ = 0.5

and σ = 0.6 the confidence intervals do not overlap and the p-values are below
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Figure 4.6: Final success rates for the speaker-listener task of MADDPG and Rec-

MADDPG for increasing observation noise. The line plots show the mean performance

and the bars represent the 95% confidence intervals. Significance values can be found

in Table B.5.
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the significance level of 0.05 and therefore we conclude that the differences in the

performance are significant. For noise-levels of σ ≥ 0.8, however, MADDPG has

a significantly better performance than Rec-MADDPG.

For the reference task with partial observability of other agents’ observations both

of the algorithms achieve success rates not much higher than 0%, Rec-MADDPG

achieves significantly better returns than MADDPG (see B.3 and Table B.3).

Thus, while both algorithms have not yet learned to successfully solve the task

completely, the agents trained with Rec-MADDPG seem to move closer to the

correct target landmarks. For the spread task, in contrast, MADDPG achieves

better success rates and significantly higher returns than Rec-MADDPG.

4.3.4 Action-Value Prediction Error

We now further investigate the quality of the critics and how the feedforward critic

compares to the recurrent critic. We stored the trained neural networks of all ten

returns. Then, after the training has finished we ran the final policy to create 100

episodes for each run. For each state-action pair in these episodes we computed

the action-value using the final critic network and calculated the returns for each

time-step. We are interested in how well the critic predicts the actual return.

Thus, we computed the mean squared error MSEt = 1
N

∑
t(Rt − Qi(ot,at))

2

between return and predicted action-value for all episodes and time-steps.

We computed the MSE for every algorithm, task and noise combination and av-

eraged the results over the 10 runs. The results are shown in Figure 4.7. The

results are correlated to the final performance of the algorithms described in the

previous section, i.e. when one algorithms has a better performance on a task

then the error of the predicted action-values is smaller. Interesting insights are

how much the errors differ. For the reference and spread tasks with partial ob-

servability of the actions the errors of MADDPG are extreme, which corresponds

with the success rates of 0%. This shows that the feedforward critic is not able at

all to predict the action values, when the actions of other agents are uncertain.

The prediction errors of the recurrent critic for the speaker-listener task with

partial observed observation of other agents only partly matches the final per-

formance of Rec-MADDPG on this task. While the prediction errors of Rec-
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Figure 4.7: Comparison of mean squared error between predicted action-values and

actual returns for MADDPG and Rec-MADDPG for different environments and noise-

levels.

MADDPG are smaller than MADDPG’s for higher noise-levels, it has a significant

worse performance compared to MADDPG for observation noise with σ ≥ 0.8.

Figure 4.8 shows the mean squared error against the steps until the episode’s end

for a noise-level of σ = 0.8. There we can see that Rec-MADDPG has higher

errors for action-values close to the end of an episode. We believe the increase

of the error at the end is caused by the fact that, when training the rolled-out

recurrent neural network, earlier steps receive more information from later steps

than steps in the end. Thus, the gradient for earlier steps is less noisy and
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Figure 4.8: Mean squared error of the predicted action-values at different time-steps

for MADDPG and Rec-MADDPG on the speaker-listener with noise-level σ = 0.8.

Since episodes have varying length, we use the steps until the episode’s end on the

x-axis.
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more accurate. Therefore, the policy improvement is done on worse action-value

predictions, for the last steps of an episode, leading to a worse performing policy

compared to MADDPG.

4.4 Discussion

We wanted to explore if the MADDPG algorithm and our recurrent adaption

Rec-MADDPG can deal with noisy observations and actions of other agents in

a decentralized multi-agent scenario. In this section, we summarize and discuss

the results of our experiments.

The experiments have shown that neither of MADDPG and Rec-MADDPG are

significantly better in all tested scenarios. However, we found that the recurrent

critic of Rec-MADDPG can alleviate the challenges MADDPG has with partial

observability of other agents in some scenarios. When actions were only partially

observed, Rec-MADDPG was still able to learn reasonable policies for the refer-

ence and spread task, which solved the task in approximately 70% and 20% of the

cases respectively. For these two tasks, however, MADDPG was not able to learn

successful policies with success rates not much larger than 0%. In these situations,

Rec-MADDPG seems to be able to compensate the uncertainty by predicting the

action-values based on the history of observations. Thus, we think that given the

history of observations and partially observed actions recurrent critics are able

to infer the taken actions of other agents in these physical environments. This

observation might not generalize to all partially observed environments, because

here the movement directly results in a change of the position and thus action

can be easily reconstructed given the history of observations.

For partially observed observations of other agents in the cooperative communica-

tion environment, Rec-MADDPG had a similar and sometimes even significantly

better performance than MADDPG for noise with a standard deviation of up

to 0.7. In the experiments with more observation noise, Rec-MADDPG had a

significantly worse performance than MADDPG. In the cooperative communi-

cation environment, agents are required to communicate private observations to

successfully complete the task. Thus, this shows that a recurrent critic is able to

infer the private information for lower noise-levels, but fails to do so for too much
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noise. We believe that in the latter case the complexity of training recurrent

neural networks poses a disadvantage compared to MADDPG, which uses easier

to train feedforward networks.

In addition, the Rec-MADDPG algorithm failed to train successful policies for

the cooperative navigation task, when given noisy observations of other agents.

MADDPG, in contrast, was able to train policies successfully, but none of the

learned policies achieved success rates of 100%. This shows that Rec-MADDPG

can be advantageous if the observations of other agents are stationary. In the co-

operative communication environment, the the critic of the listener only partially

observes which color of the target landmark is observed by the speaker. Thus,

when the critic is recurrent it can learn to estimate the true observation based

on multiple noisy observations. For the cooperative navigation task, however,

the positions of the other agents are of most interest for the critic to predict

the action-values and the distributions of the noisy observations change as the

policies of the other agents change. In this case, Rec-MADDPG seems to not

be able to generate good action-value predictions as the learned policies show a

poor performance. Thus, we assume that recurrent critics are mainly beneficial

for partially observed observations of other agents that are stationary.

While it was interesting to analyze the impact of noise in observed actions and

observations independently, it would also have been interesting to do more exper-

iments where we apply both types of noise. On the other hand, it would also be

interesting to apply the noise more specifically. For example, only applying noise

for the movement part of the actions, because one could argue that we could keep

track of received messages and therefore know what messages other agents have

send. The same is true for the observations, as the incoming messages are part

of the observations.
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Related Work

Multi-agent reinforcement learning (MARL) sits at the intersection of multi-agent

systems [55, 48] and reinforcement learning (RL) [51]. The survey of Busoniu et al.

[8] provides an overview and a taxonomy of algorithms in this field. Standard RL

is mainly concerned with finding the optimal policy or getting close to an optimal

policy that maximizes the return for a given problem. Multi-agent learning is

more complex because the environment is non-stationary due to concurrently

learning agents. While maximizing the reward is the clear goal of single-agent

RL, different learning goals have been proposed for MARL. Examples of learning

goals are to find policies that form an equilibrium, Pareto-optimality or achieving

maximal social welfare.

In this thesis, we focused on decentralized and cooperative environments, where

all agents have the same reward function and only can partially observe other

agents. The learning goal for these tasks is to find a joint policy that maxi-

mizes the expected shared cumulative reward. One of the first algorithms for

decentralized MARL was independent Q-learning [53], where each agent learns

a action-value function using the single-agent Q-learning algorithm. The dis-

tributed Q-learning [26] accounts for concurrent learning with multiple agents by

ignoring low returns, which are assumed to be caused by exploratory actions of

other agents. Both algorithms, however, are based on tabular Q-functions and

therefore do not scale to large problems.

Within the last few years, there has been great success with applying deep neural

networks in single-agent RL settings with large state and/or action spaces [35, 46,
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29, 18]. Recently, deep Q-networks (DQN) have been combined with independent

Q-learning [53] to study emergence of cooperative and competitive behavior in the

game of pong [52] and sequential social dilemmas [28]. Since these approaches are

based on independent learning they are applicable in decentralized settings but

they assume that the agents are completely independent and have no knowledge

about each other. Additionally, although DQN can deal with large state-spaces

it is infeasible for large action-spaces.

There also has been a lot of recent work for learning to communicate and cooper-

ate with centralized learning and decentralized execution. Foerster et al. [13] use

an adaption of recurrent DQN [15] with shared weights between all agents and

without experience replay to learn simple communication protocols to solve rid-

dle games. Other approaches use differentiable communication channels such that

gradients can be passed between agents during training [10, 50]. Mordatch and

Abbeel [36] proposed a model-based and centralized method that uses the same

policy for every agent and thus it is not suitable for decentralized environments.

Our work is based on the multi-agent actor-critic MADDPG algorithm from Lowe

et al. [31], which uses a centralized critic for every agent, where the critic has

access to the actions and observations of other agents. In this thesis, we assume

that the other agents are partially observable. Since MADDPG has a separate

critic for every agent it applies to decentralized settings when modeling other

agents’ policies. Foerster et al. [12] also proposed an actor-critic algorithm that

uses a specialized policy gradient to address the credit assignment problem, but

they use a single centralized critic for all agents and thus there is no simple

modification to enable this method for decentralized environments.

Another method by Foerster et al. [11] proposes a policy gradient method that

accounts for anticipated policy changes of other agents when updating an agent’s

policy. They propose the same agent modeling method as we use and has been

proposed by Lowe et al. [31], but their work is focused on competitive games

while we focus on cooperative environments.

Other recent work has specifically addressed the problem of modeling other agents

for deep MARL. The following approaches could be used instead of learning a

policy model for every other agent in the environment. Rabinowitz et al. [41] and

Grover et al. [14] propose similar approaches that combine agent identification and
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policy reconstruction, by learning to generate agent embeddings from trajectories

and to predict actions given an embedding. Raileanu et al. [42] propose to use

the agent’s own policy to predict other agents’ actions. They assume that each

agent has some hidden state based on which they choose their actions. Thus,

they propose to infer the hidden state and then use the agent’s own policy in

combination with the inferred state to predict actions of the other agent. These

methods are specifically designed for deep RL, but there has been done a lot more

research on agent modeling in the field of multi-agent systems. The survey from

Albrecht and Stone [1] gives a good overview on this subject.

Our approach is also related to independent learner algorithms as these naturally

are decentralized. One recent proposal that is similar to our work is the deep

decentralized multi-task and MARL algorithm from Omidshafiei et al. [39]. Sim-

ilar to one proposed model in [10] they use recurrent DQN, without sharing the

weights between the agents. Furthermore, they apply hysteretic Q-learning [33]

which addresses the problem that an agent can receive a poor reward due to

bad action choices of other agents and has been shown to work well empiri-

cally [57, 34, 3]. In hysteretic Q-learning, a smaller learning rate is used when

the temporal difference error for updating the action-values is negative. While the

approach of Omidshafiei et al. [39], would not scale for the the environments we

did our experiments in, it could be interesting for future work if using hysteretic

Q-learning to train the critics would be beneficial.





Chapter 6

Conclusion and Future Work

In this thesis, we proposed the Rec-MADDPG algorithm as a recurrent extension

of MADDPG [31] and compared their performance in partially observable cooper-

ative environments. To simulate different degrees of partial observability of other

agents, we introduced adding noise to the observed actions and observations. We

conducted experiments with different simulated noise levels for observed actions

and observations.

When actions were only partially observed, Rec-MADDPG was still able to learn

policies that were able to solve the reference and spread tasks in approximately

70% and 20% of the cases respectively. In contrast, MADDPG was not able to

achieve success rates much larger than 0% for two tasks. Therefore, we concluded

that the recurrent critic seems to be able to reconstruct the taken action based

on the history of the observations.

Rec-MADDPG can be advantageous over MADDPG when inferring stationary

observations of other agents, if the noise-level is not too high. However, for

too high noise levels or non-stationary observations, such as the positions of

the agents, Rec-MADDPG had a significantly worse performance compared to

MADDPG.

We only analyzed partial observability of actions and observations separately.

Therefore, next steps for future work could be to compare Rec-MADDPG and

MADDPG with partially observability of actions and observations combined. It

would also be interesting to test if our findings hold for competitive and mixed

environments. Additionally, more experiments should be conducted in more com-
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plex and realistic environments that have a natural partial observability of other

agents to test if our simulated partial observability is appropriate. In more realis-

tic environment, the state of the environment is not any more jointly observable,

thus these experiments would also investigate if our approach generalizes to Dec-

POMDPs.

Rec-MADDPG seems to be able to infer taken actions of other agents given

their observations and partially observed actions. Usually, it is not possible to

observe actions directly, for example we can observe how a robot moves around

but we do not directly observe which internal actions it chose. Therefore, future

research could examine if Rec-MADDPG still works when no actions are observed

at all. If this does not work, another possibility would be to use models to infer

actions from environment changes and then use these action estimates for Rec-

MADDPG’s training procedure.

We only made the critic recurrent, because we assumed a jointly observable state

and that it is possible to communicate all necessary state information at each

step. If this is not the case, however, the actor might need to be able to maintain

an internal state too. Thus, future work could also use recurrent neural networks

for the actors and agents models.

In summary, this thesis has shown that Rec-MADDPG can be significantly better

than MADDPG, especially when the actions of other agents are only partially

observed. However, in some environments MADDPG has a better performance

than Rec-MADDPG, thus which algorithms performs better is highly dependent

on the specifics of an environment.



Appendix A

Algorithms

For completeness, we provide the algorithms for DDPG, MADDPG and Rec-

MADDPG below.

Algorithm 1 Deep Deterministic Policy Gradient (DDPG) [29]

Randomly initialize critic Qw(s, a) and actor µθ(s) with weights w and θ

Initialize target network Q′ and µ′ with weights θ′ ← θ, w′ ← w

Initialize replay buffer R
for episode = 1, 2, . . . , n do

Initialize a random process N for action exploration

Receive initial observation o1
for t = 1, 2, . . . , T do

Selection action at = µθ(ot) + Nt according to current policy and explo-

ration noise

Execute action at and receive reward rt and new observation ot+1

Store transition (ot, at, rt, ot+1) in R
Sample a random minibatch of B transitions (ob, ab, rb, ob+1) from R
Set yb = rb + γQ′w′(ob+1, µ

′
θ′(ob+1))

Update critic by minimizing loss: L(w) = 1
N

∑
b(yb −Qw(ob, ab))

2

Update the actor’s policy using the sampled policy gradient:

∇θJ ≈
1

N

∑
b

∇θµθ(ob)∇aQw(ob, µθ(ob))

Update the target networks:

w′ ← τw + (1− τ)w′

θ′ ← τθ + (1− τ)θ′

end for

end for
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Algorithm 2 Multi-Agent Deep Deterministic Policy Gradient for n agents [31]

for agent i = 1 to n do

Randomly initialize critic Qwi(s, a) and actor µθi(s) with weights wi and θi
Initialize target network Q′i and µ′i with weights θ′i ← θi, w

′
i ← wi

end for

Initialize replay buffer R
for episode = 1 to M do

Initialize a random process N for action exploration

Receive initial observations o1
for t = 1 to T do

select actions for each agent i: a
(i)
t = µi(o

(i)
t ) + Nt, w.r.t. current policy

and exploration noise process

Execute joint action at = (a
(1)
t , . . . , a

(n)
t ) and receive rt and ot+1

Store transition (ot,at, rt,ot+1) in R
for agent i = 1 to n do

Sample a random minibatch of B transitions (ob,ab, rb,ob+1) from R
Set yb = rb + γQ′i(ob+1,a

′)|a′j=µ′j(oj,b+1)

Update critic by minimizing loss: L(wi) = 1
B

∑
b(yb −Qi(ob,ab))

2

Update the actor’s policy using the sampled policy gradient:

∇θiJ ≈
1

B

∑
b

∇θiµi(ob,i)∇aiQi(ob,ab)|ai=µi(ob,i)

end for

Update the target networks for each agent i:

w′i ← τwi + (1− τ)w′i

θ′i ← τθi + (1− τ)θ′i

end for

end for
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Algorithm 3 Recurrent Multi-Agent Deep Deterministic Policy Gradient for n

agents

for agent i = 1 to n do

Randomly initialize critic Qwi(s, a) and actor µθi(s) with weights wi and θi
Initialize target network Q′i and µ′i with weights θ′i ← θi, w

′
i ← wi

Initialize replay buffer Ri

For each other agent j initialize agent model µ̂ji with parameters φji
end for

for episode = 1 to M do

Initialize a random process N for action exploration

Receive initial observations o1
for t = 1 to T do

select actions for each agent i: a
(i)
t = µi(o

(i)
t ) + Nt, w.r.t. current policy

and exploration noise process

Execute joint action at = (a
(1)
t , . . . , a

(n)
t ) and receive rt and ot+1

Store observations, actions and reward (ot,at, rt) inRi, where o−i ∼ ω(ot)

and a−i ∼ α(at) are partially observed.

for agent i = 1 to n do

Train agent models: TrainModels(Ri, µ̂
1
i , . . . , µ̂

n
i )

Sample a random minibatch of B episodes from Ri:

(ob1,a
b
1, r

b
1, . . . ,o

b
T ,a

b
T , r

b
T )b=1,...,B

Compute target values (yb1, . . . , y
b
T ) for each episode in the minibatch:

ybt = rbt + γQ′i(o
b
t+1,a

′, hbt),

with a′j =

µ′i(obi,t+1) if j = i

µ̂ji (o
b
j,t+1) else

Update critic by minimizing loss:

L(wi) =
1

BT

∑
b

∑
t

(ybt −Qi(o
b
t ,a

b
t , h

b
t))

2

Update the actor’s policy using the sampled policy gradient:

∇θiJ ≈
1

BT

∑
b

∑
t

∇θiµi(o
b
t,i)∇abi

Qi(o
b
t ,a

b
t , h

b
t)|abi=µi(obt,i)

end for

Update the target networks for each agent i:

w′i ← τwi + (1− τ)w′i

θ′i ← τθi + (1− τ)θ′i

end for

end for
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Algorithm 4 TrainModels procedure to train agent models.

Input: replay buffer Ri and agent models to train (µ̂1
i , . . . , µ̂

n
i )

for training steps do

for µ̂ji in (µ̂1
i , . . . , µ̂

n
i ) do

Sample a random minibatch of B observation-action pairs (obj, a
b
j)b=1,...,B

from the latest the p transitions in Ri.

Update agent model by minimizing loss:

L(φji ) = − 1

B

∑
b

log µ̂ji (a
b
j|obj) + λH(µ̂ji )

end for

end for
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Figure B.1: Learning curves for MADDPG on the left and Rec-MADDPG on the

right for the speaker-listener task, showing the success rates for different values of

the temperature for the action noise.
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Figure B.2: Learning curves for MADDPG on the left and Rec-MADDPG on the right

for the reference task, showing the success rates for different values of the temperature

for the action noise.
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Figure B.3: Final returns achieved by MADDPG and Rec-MADDPG for different

environments and noise-levels. Significance values can be found in Tables B.3 and

B.4.

task name σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 σ = 1.0

speaker-listener 0.049 0.690 0.116 0.006 0.000

reference 0.932 0.038 0.871 0.445 0.695

spread 0.154 0.027 0.034 0.032 0.032

Table B.1: Significance, represented with p-values, of the difference between mean

success rates of both algorithm for different observation noise-levels. Based on the

same data as Figure 4.5.

task name τ = 2 τ = 5 τ = 8 τ = 11 τ = 13

speaker-listener 0.209 0.473 0.765 0.354 0.599

reference 0.000 0.007 0.000 0.002 0.005

spread 0.010 0.261 0.163 0.287 0.055

Table B.2: Significance, represented with p-values, of the difference between mean

success rates of both algorithm for different action noise-levels. Based on the same

data as Figure 4.5.
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task name σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 σ = 1.0

speaker-listener 0.052 0.991 0.027 0.593 0.014

reference 0.428 0.000 0.000 0.003 0.000

spread 0.269 0.048 0.052 0.070 0.039

Table B.3: Significance, represented with p-values, of the difference between mean

returns of both algorithm for different observation noise-levels. Based on the same

data as Figure B.3.

task name τ = 2 τ = 5 τ = 8 τ = 11 τ = 13

speaker-listener 0.067 0.034 0.374 0.475 0.494

reference 0.000 0.000 0.000 0.000 0.000

spread 0.000 0.008 0.001 0.034 0.000

Table B.4: Significance, represented with p-values, of the difference between mean

returns of both algorithm for different action noise-levels. Based on the same data as

Figure B.3.

no noise σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

0.292 0.921 0.142 0.154 0.197 0.021

σ = 0.6 σ = 0.7 σ = 0.8 σ = 0.9 σ = 1.0

0.016 0.580 0.023 0.010 0.000

Table B.5: Significance, represented with p-values, of the difference between mean

success rate of both algorithm for different observation noise-levels for the speaker-

listener task. Based on same data as Figure 4.6.
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