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Abstract

This thesis focuses on the issue of exploitation enabled by reinforcement learning

agents being able to incentivize each other via reward sending mechanisms. Motivated

by creating cooperation in the face of sequential social dilemmas, incentivization is a

method of allowing agents to directly shape the learning process of other agents by

influencing their rewards to incentivize cooperative actions. This method is versatile,

but it also leads to scenarios in which agents can be exploited via their collaboration

when their environmental returns together with their received incentives end up being

lower than if they had rejected collaboration and independently accumulated only en-

vironmental rewards. In my work, I have defined this behavior as exploitation via a

metricwith how a set of decision makers can act to maximize their cumulative rewards

in the presence of each other. I have expanded the action space to include a ”reject re-

ward” action that allows an agent to control whether it receives incentives from others

in order to prevent exploitation. My results indicate that cooperation without exploita-

tion is a delicate scenario to achieve, and that rejecting rewards from others usually

leads to failure of cooperation.
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Chapter 1

Introduction

Multi-Agent Reinforcement Learning (MARL) is an area of Artificial Intelligence that

is concerned with how a set of decision makers can act to maximize their cumulative

rewards in the presence of each other. The environments in which MARL is deployed

can be either competitive, in which agents have to behave in a zero sum manner, coop-

erative, in which agents share the same rewards and have to work together, or mixed,

in which each agent maximizes their own cumulative rewards, but their overall rewards

depend on each other’s actions. The latter scenario is of much greater interest to real-

world applications, as highlighted by Dafoe et al [3], and is the scenario explored in

this thesis.

Mixed-motive environments can be exemplified through Sequential Social Dilem-

mas (SSDs), a class of games designed such that individual rationality is at odds with

group-level outcomes. Enormous benefits can result from learning how to optimally act

in SSDs, since these games can reflect real-world scenarios such as how to achieve co-

operation between countries in a game of preventing climate change catastrophes when

each country is unilaterally incentivized to not cooperate with a global allegiance.

The foundation of this thesis relies on a few recent developments in MARL that

can be classified as Social Learning. Social Learning is any mechanism that allows

an agent to learn not only from its individual environmental rewards but also from in-

centivization: rewards sent by other agents to induce a certain policy in the recipient

agent. Hence, Social Learning enables an agent to maximize its own cumulative re-

wards by influencing others to shape their behaviour in a way that benefits the agent

sending the rewards. In a similar fashion to how humans do favours for each-other

to foster cooperation in an otherwise competitive world, Social Learning attempts to

enable Reinforcement Learning agents to create a Social contract that, when engaged
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Chapter 1. Introduction 2

with, would allow them to cooperate and achieve better outcomes than if they had

independently competed with each-other.

In practice, I will show that Social Learning can be used to create exploitation:

induce a recipient agent to adopt a policy that only benefits the agent which has incen-

tivized it to adopt that policy. In other words, I show how an agent that accepts rewards

from another agent and hence engages in Social Learning, ends up accumulating less

environmental rewards plus received incentives than if it has acted completely inde-

pendently and only accumulated environmental rewards. This behaviour goes against

the interest of agents acting in mixed-motive settings and against the nature of cooper-

ation: ”Why should I cooperate if by doing so I am going to be worse off than if I act

competitively and selfishly?”.

This thesis addresses the problem of avoiding exploitation when engaging in Social

Learning. I have explored a reward-rejection method to achieve this, by extending the

action space in a Learning to Incentivize Others (LIO) agent [28] that allows an agent

to reject an incoming reward. The results show that the method is able to prevent

exploitation, but with a caveat in that agents are no longer able to collaborate either.



Chapter 2

Background and Related Work

The main background will define the following key terms: MARL, SSDs, Social

Learning, exploitation and fair incentivization.

2.1 Multi-Agent Reinforcement Learning

Reinforcement Learning (RL) is a subfield of Machine Learning that is concerned with

solving the prediction and the control problems. The former is defined as the task of

estimating the value of a particular state in the environment, and the latter is the task

of finding an optimal policy for each state of the environment. The ultimate goal of

the RL agent is to maximize a scalar signal provided by the environment, called a

reward. Hence, for an agent, the prediction problem is how to estimate the value of

future rewards that can be accumulated from each state in the environment, and the

control problem is how to find a policy that maximizes the reward after exploring the

environment’s state space. At the end of the learning process, an agent should have an

optimal policy that dictates how to act in each state in the environment.

While single agent RL offers a framework for finding the optimal policy for a

single agent acting in an environment, a more versatile framework is Multi-Agent Re-

inforcement Learning (MARL), which acknowledges the presence of other intelligent

agents in the environment and how their learning process creates a non-stationarity that

impacts an agent’s learning process.

Formally, MARL is defined on Stochastic Games [24] as follows:

let (N,S,{Oi}i∈N ,{Ai}i∈N ,{Ri}i∈N ,T ) be a tuple where i∈ {1..N} denotes each agent,

S is the state space, A=A1× ...×AN is the joint action space, oi ∈Oi is the observation

of each agent i depending on the current state, Ri is the reward function Ri : S×A×S 7→

3



Chapter 2. Background and Related Work 4

Prisoners C D

C 3,3 0,4

D 4,0 1,1

Figure 2.1: Prisoners’ Dilemma, an SD, is a matrix game in which Player 1 takes row

actions and Player 2 takes column actions, with the game utilities for Player 1 and Player

2 written in each cell for each combination of their actions.

R for each agent i that rewards each agent for the actions and transitions that it has

taken, and T : S×A 7→ δ(S) is a transition function which maps joint state actions

to a distribution over the following states. Each agent i learns a policy πi that maps

each observation oi in state s to a probability distribution over available actions. Each

agent i seeks to maximize its own cumulative reward given the policies of other agents.

Hence, the learning objective of all agents is to find policies π = (π1...πN) such that

∀i : πi ∈ argmaxπ′i
E[Gi|π′i,π−i], where π−i = π\{πi} represents the policy of all other

agents and Gi = ∑
∞
t=0 γtRi,t is the agent’s return.

2.2 Sequential Social Dilemmas

A Social Dilemma is a game that exposes conflicting rationality between the individual

and the group outcomes [21]. In a Social Dilemma, cooperation makes it possible for

the contributing agents to achieve better outcomes than by acting alone, but there is

always the temptation for freeriding and other strategies that implies a tragedy of the

commons which threatens the cooperation that makes these strategies possible. In other

words, a Social Dilemma is a scenario that shows how selfishness and selflessness are

in conflict, and it can model powerful decision-making scenarios such as whether to

face the costs of reducing emissions when a global allegiance of countries has already

decided to fight against climate change.

However powerful, Social Dilemmas (SDs) such as Prisoners’ Dilemma in Fig-

ure 2.1 are one-off interactions that restrict the actors to take only one decision before

the outcomes are decided. On the other hand, to account for inter-temporal dilemmas,

a more versatile framework is one of Sequential Social Dilemmas (SSDs). Instead of

restricting the interaction to one decision, agent interaction in SSDs may last for a fi-

nite/infinite number of times, in which game states change according to past actions,

allowing the participants to form long-lasting relationships between them.



Chapter 2. Background and Related Work 5

Formally, a Sequential Social Dilemma is a tuple (M ,ΠC,ΠD) in which M rep-

resents a Stochastic Game with a state space S and ΠC and ΠD are disjoint sets of

policies that represent cooperative and defective behaviour. In general-sum matrix

games, which are games defined on a matrix in which payoffs do not have restrictions

and agents take actions simultaneously, there are four possible outcomes: R (reward

for mutual cooperation), P (punishment from mutual defection), S (sucker for cooper-

ating with a defector) and T (temptation for defecting against a cooperator). For state

s ∈ S, let the empirical matrix (R(s),P(s),S(s),T (s)), be the payoff matrix induced by

following the policies ΠC and ΠD. Then, the tuple (M ,ΠC,ΠD) is an SSD when there

exist states s∈ S that induce a matrix that satisfies the following inequalities [9]: R>P,

R > S, R > T+S
2 and either T > R or P > S.

Some sophisticated SSDs, such as the Harvest Game [8], have common resources

that require the players to withhold themselves from over-exploiting them for the ben-

efit of all. Other SSDs, such as Cleanup [7] and Escape Room [28], require the players

to create a division of labour and share the outcomes of the cooperation with each-

other. This dissertation focuses on this latter kind of SSDs, and explores how this

division of labour can cause agents to behave exploitatively towards one another. To

illustrate, consider the game of Escape Room shown in Figure 2.2. In order to achieve

a positive score in this game, players have to cooperate and distribute their labour in

such a way that some of them take a costly action and some of them collect the reward

thanks to that costly action. Hence, some players will be workers and some players

will reap the benefits of that labour, much like in an employee-shareholder relation

in a modern corporation. To create such a distribution of labour, players have to ex-

plore the possible strategy space and settle on a stable strategy. In such a scenario,

classical MARL algorithms fail to create a stable cooperative strategy [28], one that

allows the collective outcome of the players to be positive. In order to address this

issue, some proposed methods [28, 10, 14] use a mechanism to share rewards between

agents, in order to allow a cooperative division of labour to emerge. Such methods will

be referred to in this thesis as ’Social Learning’.

2.3 Social Learning

Within this thesis, Social Learning is defined as any Multi-Agent Reinforcement Learn-

ing algorithm that enables agents to learn not only from the rewards coming from the

environment but also from the rewards that are being given by other agents to influence
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startlever door-1
-1

-1 or 10
-1

-1 or 10

-1

Figure 2.2: The N-player Escape Room game [28] ER(N,M). For M < N, if fewer

than M agents pull the lever, which incurs a cost of −1, then all agents receive −1 for

changing positions. Otherwise, the agent(s) who is not pulling the lever can get +10 at

the door and end the episode. Staying in the same state incurs no loss, and agents can

end the episode in one step if they coordinate.

the behaviour that those giving agents desire. Hence, in Social Learning, an agent is

able to send other agents rewards in order to influence them to take socially desirable

actions. Therefore, an agent’s objective becomes to find a policy that maximizes the

sum of the environmental reward plus the reward received from all other agents, given

their policy. Social Learning was introduced through the works of Yang et al. [28],

Lupu et al. [10], and recently, by Merhej et al. [14].

Formally, an incentive is a reward r j
i that a reward-giving agent i sends to a reward-

receiving agent j. Rewards that are sent as incentives are usually taken from the cu-

mulative returns Gi of the reward-giving agent [28, 14], but can also be allocated from

a separate budget [10]. In this thesis, the focus will only be on the former.

Social Learning addresses key issues with cooperation in Sequential Social Dilem-

mas, such as modifying the reward structure to remove the temptations of defection

and allowing cooperation to emerge without a preimposed contract. Therefore, Social

Learning facilitates decentralization, since agents can learn how to develop their own

ways of sharing preferences about the behaviour of others without having to synchro-

nize with a central authority before cooperating with them.

2.4 Exploitation

Despite Social Learning offering an appealing way to induce cooperation in SSDs,

there are outstanding concerns with how the method tends to show signs of exploita-

tion. Due to the fact that every agent is learning to maximize their own cumulative

returns by altering the behaviour of others, an agent can learn that it can maximize its

returns by inducing other agents to adopt policies that are initially mutually beneficial,
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only to then stop rewarding an agent with a converged policy and unilaterally benefit

from its behaviour. Consequently, an agent that has converged to a policy influenced

by the rewards of other agents could have instead rejected their rewards and learned a

policy that would have eventually resulted in higher environmental cumulative returns.

The latter behaviour exemplifies exploitation: when an agent cooperates and learns a

policy that benefits others, but as a result, it does worse in environment returns plus re-

ceived incentives than if it had not cooperated from the very beginning. The difference

between the environmental returns achieved independently and environmental returns

plus received incentives received cooperatively are used in this thesis as an exploitation

metric.

The reason why exploitation can occur is due to the non-stationarity of the rewards

that an agent receives, which is dependent on the learning process of other agents.

Hence, once an agent learns that it can drop the reward it has been sending to another

agent in order to create cooperation, and that agent will not retaliate, it will do so via

its own reward maximization process. Because sending rewards is a costly process,

and in Social Learning it has been found that the most successful method is to tax the

sender with the amount that it is giving to others [11], an agent will seek to minimize

the amount of reward it is sending others as long as their policies remain unchanged,

and hence the agent’s collected cumulative rewards remain unchanged.

Much like workers can go on strike once they are no longer being paid, a Reinforce-

ment Learning agent should be able to retaliate against a sudden drop in the rewards

it has been receiving to do cooperative tasks. More egregiously is when an RL agent

could have achieved higher cumulative rewards if instead of learning a cooperative

policy, it had learned a competitive policy by disregarding the rewards it receives from

others to take specific costly actions. As it will be shown in a subsequent section, a

modified game of Escape Room specifically illustrates this scenario and will function

as the benchmark for creating a reward-rejection mechanism that allows an agent re-

taliation capacity. Hence, Fair Incentivization is when a reward sent to another agent

to induce it to adopt a certain policy is equal to or greater than the opportunity cost of

the agent adopting a competitive policy, one that always rejects incentives.

2.5 Related Work

There are currently very few works that address exploitation created through incen-

tivization and Social Learning, but there are a few notable examples that do address
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similar issues. For instance, Aitchison et al [12] investigate deception in a mixed-

motive game and show how second-degree Theory of Mind can be used to manipulate

RL agents. Ndousse et al [19] look at how Social Learning can induce learners to ac-

quire sophisticated cooperative behaviours and quickly adapt to new tasks, but they do

not explicitly address exploitation or deception. Zimmer et al [29] optimize a fairness

function that balances efficiency and equity, and provide evidence for its applicability

in fully decentralized MARL settings, a formulation closer to that of Social Learning.

Their findings suggest that allowing an agent to learn how to first be self-concerned

can induce it to find a fair distribution of rewards. Vinitsky et al [25] look at how to

acquire social norms in decentralized MARL and how they can achieve socially ben-

eficial outcomes. Their results indicate that decentralized agents struggle to achieve

cooperation in the two modified environments based on Harvest and Cleanup which

allow free-riding behaviour, and that norms provide incentives to align agents on mutu-

ally beneficial equilibria. Another relevant work worth mentioning is one by McAleer

et al [13], which uses a Pareto Mediator to improve social welfare in a population of

agents with conflicting interests.

On the Safety front of Reinforcement Learning, some notable works do come into

the spotlight and might offer insights into how to safely learn policies using the rewards

of others without getting exploited. For instance, a recent example such as Elsayed-

Aly et al. [5] highlights that there currently are no safety guarantees in MARL, and

proposes a shielding approach to guarantee the safety specifications using Linear Tem-

poral Logic. Another recent work by Roman et al. [22] acknowledges the dilemma

between cooperation and exploitation and provides an objective to balance these con-

cerns through a risk capital approach which re-invests the utility resulting from cooper-

ation with minimal impact to long-term safety. A related recent method by Belardinelli

et al. [17] uses formal verification expressed via Probabilistic Computation Tree Logic

to identify policies that meet safety constraints in multi-agent environments.

Another related line of work is by Melo et al. [15] which finds that wealth inequal-

ity drives a group of agents away from the optimal performance in social dilemma

games with public goods. A less related example, but still worthy of mentioning,

is the study of Danassis et al. [4] which applies human conventions in games of

common-pool resources, which found that introducing an arbitrary common signal

induces agents to reach sustainable harvesting strategies. Moreover, a recent work by

Yaman et al [27] looked at how environment uncertainty modulates how effective So-

cial Learning is versus Independent Learning, showing that meta-controlling the degree
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of Social Learning allows agents to resolve environmental uncertainty by leveraging

other’s experiences as an external knowledge base.

Despite not being directly applicable to mixed-motive games or Social Learning,

there are some notable works related to exploitability in two-player zero-sum Markov

games [1], or which leverage reputation dynamics through intrinsic rewards [2]. Lastly,

there exists a body of literature that looks at norms and conventions in multi-agent sys-

tems [26, 16] and mechanism design in game theory [18], but without the decentralized

emergent behaviour of incentivization through Social Learning. In the same note, trust

and reputation in multi-agent systems [6, 23] offers another take on establishing coop-

eration, but these methods have not addressed incentivization-induced exploitation.



Chapter 3

Methods, Outcomes and Experiments

Due to the time and resource constraints of this project, the method that was investi-

gated as a means to prevent exploitation is a simple extended action-space that allows

an agent to choose a reject-reward action to prevent itself from following the rewards

of another agent. More sophisticated methods will be discussed in the ’Future Work’

section. What follows is a detailed explanation of the method and why it is a sound

choice for preventing exploitation, the desired outcome when preventing exploitation

and how it looks like in a modified version of Escape Room, and experimental results

showing the capacity of the method to prevent exploitation.

3.1 Exploitation Metric

Before discussing the proposed method, it is necessary to define the benchmark by

which the method will be assessed. Inspired by counterfactual thinking, I propose

an exploitation metric that compares the cumulative rewards achieved by competitive

independent Actor-Critic agents with the cumulative rewards (environmental plus in-

centives) achieved by cooperative agents engaging in Social Learning. The metric

looks at how much better an agent would have fared, had it learned a competitive pol-

icy disregarding the incentives of others, compared with an agent that offered itself to

be incentivized by rewards and learned a cooperative policy through Social Learning.

Guided by fairness principles, I suggest that anytime an agent is achieving less cu-

mulative rewards after accepting incentives through Social Learning, its work is being

exploited by others, and in turn, it should had stop following their incentives. Since

the policy of an agent implicitly changes to maximize the returns, both environmental

plus those rewards sent by others, this exploitation metric highlights whether an agent,

10
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after being influenced by others, would have been better off in terms of returns had it

rejected the incentives sent by others before updating its policy.

Formally, the exploitation is defined as the following:

ei
t = max(0,Gi

t,πAC
−Gi

t,πSL
),

where i is the agent number, t is the episode number, and each G is the return at episode

t for agent i following first an independent actor-critic policy update algorithm and

then following a Social Learning algorithm. The max with 0 operation is to highlight

only positive exploitation, that is when an agent would have done better following

independent actor-critic. Conversely, an exploitation of 0 or of negative value would

mean that at each episode t, agents are receiving returns at least as high by cooperating

through SL as compared to independent AC, a desired outcome of cooperation.

3.2 Rejecting Incentives

The simplest way to prevent exploitation, inspired by the PG-d and AC-d baselines in

Yang et al [28], is to extend the action space of the learning agent with a reject-reward

action. Hence, an agent with such an extended action space, through its exploration

phase, learns how to control the reward that it is receiving from another agent, and in

turn, guide its own policy against exploitation.

Formally, the rejection mechanism is an extended action space

Are ject = A ∪{re ject− reward}

where the {re ject − reward} action, when taken by agent j, will discard any gifted

incentive r j
i by any other agent i, and A is the regular action space of the RL agent.

Hence, agents which are sending incentives that are discarded will still be penalised

with the value of the incentive, but a recipient which rejects it will not be influenced

by it. The hope is that through the process of action exploration, a reward-giving agent

learns to send the amount of reward that is at least as high as the opportunity cost

of cooperation, and never less than that. The reward-giving agent should, therefore,

be guided by the reward-receiving agent’s exploration of whether rejecting early-sent

incentives allows it to later-on in the episode find a better policy that nets it higher

cumulative rewards.
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3.3 Experiments

This thesis uses the Learning to Incentivize Others (LIO) [28] implementation of So-

cial Learning, which provides a second-order LIO gradient method that analyses how

a reward-giving agent’s policy will update after the acceptance of an incentive. For

the experiments, this method is augmented with the rejection mechanism defined in

Section 3.2, and benchmarked according to the exploitation metric defined in Section

3.1. The hyperparameters are unchanged from the default LIO implementation [28].

First of all, to establish a baseline environment in which exploitation can be high-

lighted, I use a modified Escape Room(2,1) game where the reward for exiting the

door is 1.1, and everything else is unchanged. The reason for this modification is that

in this environment, independent AC agents will learn to stay put in the start state and

incur no loss for a total cumulative reward of 0, as opposed to greedily moving to-

wards the door and unnecessarily incurring a loss of −1. Hence, in this environment,

called ER1.1(2,1) from now on, the exploitation for an agent cooperating through So-

cial Learning is the difference between what it could achieve by following an indepen-

dent, competitive Actor-Critic policy, which nets it a cumulative reward GAC of 0, and

the cumulative return GSL that it achieves following the rewards of others.

Even though an agent will not initially change its policy unless it is receiving re-

wards from other agents to take specific actions, there is no long-term guarantee that

these rewards will continue to be sent by others. Hence, an agent that relies on these re-

wards to find an optimal policy might find itself stuck in a local minima with respect to

its cumulative reward G, when these rewards stop being sent by others. Consequently,

reward-receiving agents that avoid exploitation have to be vigilant to others’ drop of

incentives, when others are looking to minimize the costs of sending these incentives,

now that others have adopted the desired behaviours through those incentives.

The baseline experiment with independent AC actors in ER1.1(2,1) can be seen in

Figure 3.1, where both agents converge to a cumulative reward GAC of 0, signifying

they have found the global optimum policy for competing agents. To understand why

this is so, agents which cannot cooperate to distribute the labour in ER1.1(2,1) are

bound to either try to compete for going to the door, which incurs a loss of −1 when

no agent is at the lever or to stay put in the start state, which incurs no loss. The former

can only net a positive reward when the other agent sporadically visits the lever, but

because both agents are competing for being at the door, they can never establish which

one takes which role. In practice, as can be seen in Figure 3.2, if the reward is higher
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Figure 3.1: The performance of Independent AC in ER1,1(2,1) functions as the baseline

performance for competitive agents. We observe that both agents converge to the

optimal competitive policy: that in which both remain at the start state and incur no

movement penalty.

(such as the default +10 for visiting an open door), independent AC agents fail to

converge to the policy of staying put, and instead, both converge to a policy where

they immediately go to the door, guided by past experiences where the other agent was

sporadically at the lever. Since both agents learn from past experience that going to

the door is more rewarding than going to the lever, they both greedily move towards

the door and take a loss of −1, lower than the optimum of staying at the start state and

netting a cumulative reward GAC of 0. However, in ER1.1(2,1), this behaviour does

not happen, and hence, it stands as the exploitation metric benchmark for the reward

rejection mechanism.

Having motivated ER1.1(2,1) as the appropriate environment for the exploitation

experiments, we notice how two Social Learning, LIO agents from Yang et al [28]

perform in this environment. We observe in Figure 3.3 that the two agents converge to

an exploitative cooperation, since one of the agents collects the rewards from opening

the door, and the other achieves less reward than 0, the optimal competitive reward

indicated by independent Actor-Critic in the previous experiment.

Second of all, we can see in Figure 3.4 how the reward-rejection mechanism de-

fined in Section 3.2 fares when used in conjunction with the LIO agents from Yang
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Figure 3.2: Independent AC does not converge to the global competitive optimal policy

in ER10(2,1), the original 2-player Escape Room. Instead, agents incur a −1 loss

for unnecessarily moving towards the door. Since agents would achieve just as high

cumulative rewards acting competitively in this game as they would if they incurred a

loss of −1 for moving towards the lever (as a result of past incentivization), this version

of the game is not used to show exploitation. Hence, we observe that exploitation is not

always straightforward to show, and some games might require a different approach

to highlight what better outcomes agents could have achieved compared to following a

Social Learning algorithm.



Chapter 3. Methods, Outcomes and Experiments 15

0 200 400 600 800 1,000

−2

−1

0

1

100’s of timesteps

C
um

ul
at

iv
e

R
ew

ar
d

Social Learning LIO agents in ER 1.1(2,1)

Agent1
Agent2

0 200 400 600 800 1,000

0

0.5

1

1.5

2

100’s of timesteps

E
xp

lo
ita

tio
n

M
et

ri
c

Exploitation caused by Social Learning LIO in ER 1.1(2,1)

Agent1
Agent2

Figure 3.3: The performance of Social Learning LIO agents in ER1,1(2,1) measured

by cumulative reward shows how one agent captures the entire reward from going to

the door and exploits the other, which continues to go to the lever even though it is no

incentivized anymore. The exploitation metric highlights how much more cumulative

reward the exploited agent could have achieved had it followed an Independent Actor-

Critic algorithm, and rejected the rewards from the reward-giving agent.
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Figure 3.4: The performance of Social Learning LIO agents when augmented with a

reject-reward action, as described in Section 3.2. We observe how the rejection method

is capable of reducing exploitation, however, the result is that the agents are no longer

cooperating either since neither of them is able to fairly incentivize the other to go to the

lever. A more sophisticated reward-rejection mechanism would have a similar reduction

in exploitation, but with at least one of the agents achieving positive cumulative rewards

from exiting the door.



Chapter 3. Methods, Outcomes and Experiments 17

0 20 40 60 80 100

−50

0

50

100

1000’s of timesteps

C
um

ul
at

iv
e

R
ew

ar
d

LIO Agents failing to fairly incentivize each-other in Cleanup

Agent1
Agent2

Figure 3.5: Social Learning fails to fairly incentivize in the game of Cleanup, using the

LIO implementation. We observe that collectively, the agents achieve positive cumula-

tive returns, however, at stark losses for one of the agents, the one making the incen-

tivization. The two agents oscillate between one of them being incentivized to clean the

river and the other collecting apples, but the agent collecting apples incurs a significant

loss by incentivization. As soon as the harvesting agent tries to reduce its incentive to

achieve a positive cumulative reward, the other agent stops collaborating. Hence, the

agents are unable to stably cooperate and distribute their labour in this more sophisti-

cated SSD. Future research should investigate what fair incentivization would look like

in this game, and how to achieve it consistently.

et al [28]. We observe that the rejection mechanism successfully prevents any agent

from getting exploited, however, the reward-giving agent is not able to stabilize to a

fair incentive and both agents end up staying in the start state for a cumulative reward

of 0.

Both of these experiments highlight the delicacy of the cooperation achieved through

a Social Learning mechanism, and that fair incentivization is something that should be

explored in future work.

To understand why fair incentivization is necessary, consider an experiment with

a more sophisticated environment, Cleanup [7]. In Figure 3.5 we observe that al-

though LIO agents learn to find a division of labour between themselves, with one

agent cleaning the river and the other collecting the apples, there is a clear imbalance

between the returns of the two agents: one of them achieves a return of +100 and the
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other -60. However, in this experiment, the agent collecting the apples, and the one

which is significantly more reward-giving, achieves a cumulative reward of -60, even

though independent AC agents each achieve a cumulative reward of +5. Hence, in

this environment, the reward-giving agent fails to learn a fair incentive to send to the

reward-receiving agent which does the cooperative work. Since the reward-rejection

mechanism isn’t designed to prevent the over-spending of incentivized rewards by the

reward-giving agent, fair incentives would not be created by the method proposed in

Section 3.2, leaving this issue open for future work.



Chapter 4

Conclusion and Future Work

Social Learning is a powerful mechanism that allows Reinforcement Learning agents

to learn cooperative behaviours in Sequential Social Dilemmas, a class of games that

can model important societal issues such as cooperating to prevent runaway climate

change or maintaining international relations. In a future where Multi-Agent Rein-

forcement Learning is a key part of the Artificial Intelligence digital infrastructure

taking automated decisions, anticipating ways in which to safely deploy Social Learn-

ing, without creating exploitation in other learning agents, be they human or artificial,

is extremely desirable and falls within a broader framework that has recently drawn

significant attention, Cooperative AI [3].

This thesis has focused on a specific Safety issue with Social Learning, namely,

exploitation, defined to be when a reward-receiving agent is no longer fairly incen-

tivized for its cooperation. To address this issue, this thesis proposes a reject-reward

mechanism, which successfully prevents exploitation in a simple SSD environment, a

modified Escape Room game. Hence, the contributions of this thesis are the following.

Firstly, the exploitation metric defined in this thesis measures this fair incentivization

by comparing the cumulative returns resulting from following a cooperative Social

Learning algorithm to the returns resulting from following a competitive independent

Actor-Critic algorithm. Through this exploitation metric, this thesis shows that a cur-

rent Social Learning implementation [28] fails to fairly incentivize. Then, this thesis

presents a method to prevent exploitation, inspired by Yang et al[28], by extending

the action space of the agents to include a reject-reward action taken together with

a regular environment action. Through experimental evidence, the thesis shows how

this metric successfully prevents exploitation, however, at the cost of preventing the

agents from forming stable cooperative policies. Finally, the thesis highlights why fair

19
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incentivization is an issue in Cleanup, a more sophisticated SSD, where the proposed

method would not yet be adequate due to the exploitation happening in the reward-

giving agent.

For future work, the reward-rejection mechanism can be based on the same two-

step optimization process that LIO [28] uses in the reward-giving agent, but mirrored

in the reward-receiving agent. More specifically, this proposed method would have the

reward-receiving agent perform a two-stage optimization process wherein at the up-

per level the rejection function accounts for the recipients’ policy optimization at the

lower level as the result of accepting an incentive from a reward-giving agent. Since

leveraging second-order gradient methods captures longer-term dependencies between

policy network updates and cumulative reward changes, this method could mitigate

exploitation and create fair incentivization. In turn, since both the reward-giving and

the reward-receiving agents would perform two-stage optimization processes, a related

area of work that could become relevant is Theory of Mind in Cooperative Reinforce-

ment Learning [20].
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tega, D. Strouse, Joel Z. Leibo, and N. D. Freitas. Social influence as intrinsic

motivation for multi-agent deep reinforcement learning. In ICML, 2019.

[9] Joel Z. Leibo, V. Zambaldi, Marc Lanctot, J. Marecki, and T. Graepel. Multi-

agent reinforcement learning in sequential social dilemmas. Autonomous Agents

and Multi-Agent Systems, abs/1702.03037, 2017.

[10] A. Lupu and Doina Precup. Gifting in multi-agent reinforcement learning. In

AAMAS, 2020.

[11] Andrei Lupu and Doina Precup. Gifting in multi-agent reinforcement learning

(student abstract). Proceedings of the AAAI Conference on Artificial Intelligence,

34(10):13871–13872, Apr. 2020.

[12] Lyndon Benke Matthew Aitchison and Penny Sweetser. Learning to deceive in

multi-agent hidden role games. 2nd International Workshop on Deceptive AI

IJCAI2021, year=2021.

[13] Stephen McAleer, John Lanier, Michael Dennis, P. Baldi, and Roy Fox. Im-

proving social welfare while preserving autonomy via a pareto mediator. ArXiv,

abs/2106.03927, 2021.

[14] Ramona Merhej and Mohamed Chetouani. Lief: Learning to influence through

evaluative feedback. ALA 2021.

[15] Ramona Merhej, F. Santos, Francisco S. Melo, and F. C. Santos. Cooperation be-

tween independent reinforcement learners under wealth inequality and collective

risks. Proceedings of the 20th International Conference on Autonomous Agents

and MultiAgent Systems, 2021.

[16] Andreasa Morris-Martin, M. B. Vos, and J. Padget. Norm emergence in multia-

gent systems: a viewpoint paper. Autonomous Agents and Multi-Agent Systems,

33:706 – 749, 2019.



Bibliography 23

[17] Pierre El Mqirmi, F. Belardinelli, and Borja G. Leon. An abstraction-based

method to check multi-agent deep reinforcement-learning behaviors. Proceed-

ings of the 20th International Conference on Autonomous Agents and MultiAgent

Systems, 2021.

[18] Y. Narahari. Game theory and mechanism design. 2014.

[19] Kamal Ndousse, Douglas Eck, Sergey Levine, and Natasha Jaques. Emergent

social learning via multi-agent reinforcement learning. In ICML, 2021.

[20] D. Nguyen, S. Venkatesh, Phuoc Nguyen, and T. Tran. Theory of mind with guilt

aversion facilitates cooperative reinforcement learning. ArXiv, abs/2009.07445,

2020.

[21] A. Rapoport. Prisoner’s dilemma — recollections and observations. 1974.

[22] Charlotte Roman, Michael Dennis, Andrew Critch, and Stuart J. Russell. Ac-

cumulating risk capital through investing in cooperation. Proceedings of the

20th International Conference on Autonomous Agents and MultiAgent Systems,

abs/2101.10305, 2021.

[23] Michael Sievers, A. Madni, Parisa Pouya, and Robert J. Minnichelli. Trust and

reputation in multi-agent resilient systems*. 2019 IEEE International Conference

on Systems, Man and Cybernetics (SMC), pages 741–747, 2019.

[24] Eilon Solan and Nicolas Vieille. Stochastic games. Proceedings of the National

Academy of Sciences, 112(45):13743–13746, 2015.

[25] Eugene Vinitsky, R. Koster, J. Agapiou, Edgar A. Duéñez-Guzmán, A. Vezhn-
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