
Reinforcement Learning with

Function Approximation in

Continuing Tasks: Discounted

Return or Average Reward?

Panagiotis Kyriakou

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2021

Abstract

Reinforcement learning is a machine learning sub-field, involving an agent perform-

ing sequential decision making and learning through trial and error inside a predefined

environment. An important design decision for a reinforcement learning algorithm is

the return formulation, which formulates the future expected returns that the agent re-

ceives after following any action in a specific environment state. In continuing tasks

with value function approximation (VFA), average rewards and discounted returns can

be used as the return formulation but it is unclear how the two formulations compare

empirically. This dissertation aims at empirically comparing the two return formula-

tions. We experiment with three continuing tasks of varying complexity, three learning

algorithms and four different VFA methods. We conduct three experiments investi-

gating the average performance over multiple hyperparameters, the performance with

near-optimal hyperparameters and the hyperparameter sensitivity of each return formu-

lation. Our results show that there is an apparent performance advantage in favour of

the average rewards formulation because it is less sensitive to hyperparameters. Once

hyperparameters are optimized, the two formulations seem to perform similarly.

i

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Panagiotis Kyriakou)

ii

Acknowledgements

I would like to thank my supervisor Stefano Albrecht as well as my co-supervisors

Josiah Hanna and Lukas Schäfer for their guidance and feedback over the course of

the project proposal and the dissertation.

iii

Table of Contents

1 Introduction 1

2 Background 4
2.1 Reinforcement Learning . 4

2.2 Markov Decision Processes . 4

2.3 Continuing and Episodic Tasks . 5

2.4 Average Rewards and Discounted Returns 6

2.5 Learning Algorithms . 7

2.5.1 Q-Learning . 8

2.5.2 SARSA . 8

2.5.3 Overestimation Bias and Double Q-Learning 9

2.6 Value Function Approximation . 9

2.6.1 Linear VFA . 10

2.6.2 Polynomial Basis Function VFA 10

2.6.3 Deep VFA . 11

2.7 Related Work . 11

3 Methodology 14
3.1 Learning Algorithms . 14

3.2 VFA Methods . 15

3.3 Tasks . 16

3.3.1 Task 1: Access-Control Queuing 16

3.3.2 Task 2: Factory Production Simulation 16

3.3.3 Task 3: Catching Falling Objects 18

3.4 Hyperparameter Selection . 19

3.5 Evaluation . 19

3.6 Comparison . 20

iv

3.7 Implementation Details . 21

4 Empirical Comparison Results 23
4.1 Best 30% of Hyperparameters Results 23

4.2 Best Hyperparameter Results . 29

4.3 Hyperparameter Sensitivity . 34

5 Conclusions 38

Bibliography 40

A Appendix A: Learning Algorithms Pseudocode 44

B Appendix B: Hyperparameter Samples 46

v

Chapter 1

Introduction

Reinforcement learning is a machine learning sub-field that involves sequential deci-

sion making inside a predefined environment. In reinforcement learning, an agent is

trained through trial and error to perform decisions in order to solve a particular task.

The agent receives a reward signal as feedback based on its chosen action and the

environment states the agent is in. The agent’s goal is to maximise that reward signal

over time. Reinforcement learning has had some impressive accomplishments [1, 2, 3],

which is why it has grew in popularity over the past decade [4].

In many reinforcement learning methods, in order for the agent to make informed

decisions at each state of the environment, the agent needs to predict the return that

it will receive following a policy from that state. The way that the future expected

returns are formulated is referred to as the return formulation and it is a very important

design decision when creating a reinforcement learning algorithm. That is because

it can affect the performance of the agent on the reinforcement learning task greatly.

Discounted returns are the most common return formulation, which weight the future

rewards based on their immediacy (short term rewards are more valued that long term

rewards). Average rewards is another return formulation, which does not differ the

weight between short term and long term rewards, regarding them both as equally

important.

In reinforcement learning, the environment complexity can vary, with more com-

plex environments having more states the agent can be in or more actions the agent can

perform. In many traditional methods, the expected return of each action from each

state is stored in a matrix with the action space and the state space being the matrix

dimensions. Unfortunately, when an environment is complex and its state space or

action space are large, it is impractical to use a matrix. That is, because it will need

1

Chapter 1. Introduction 2

a lot of time to be fully updated with accurate estimates of the expected returns and

because it might not be able to fit in the computer’s memory. For these reasons, value

function approximation is used. Value function approximation involves the use of a

parameterised function of environment features, whose parameters are learned during

training.

At the time of writing, there has been limited work investigating the empirical

performance difference between the two return formulations mentioned above. Theo-

retical work by Tsitsiklis and Van Roy [5] and Sutton and Barto [6] suggests that the

two return formulations should perform similarly, but neither work has been supported

by empirical results. On the other hand, empirical work performed by Mahadevan

[7] and Schwartz [8], suggests that average rewards outperform discounted returns in

terms of average rewards acquired at convergence and speed of convergence. In both

of these cases though, simple environments were used that did not require the use of

value function approximation. In 2019, an empirical comparison between the two re-

turn formulations with VFA was performed by Descause [9]. In that comparison it

was shown that average rewards outperform discounted returns and it was hypothe-

sised that that might have been because the action-values were easier to estimate when

average rewards were used. Unfortunately, limited evidence was provided to support

that claim.

This work is a continuation of the work done by Descause [9]. As discussed in

our IPP [10], we aim to answer the following research question: How do average re-

wards and discounted returns compare empirically and why are empirical performance

differences seen in practice ?

Given the results of Mahadevan [7], Schwartz [8], and Descause [9], we initially

hypothesise that average rewards will indeed perform better than discounted returns

in terms of average rewards acquired at convergence and in terms of the speed of

convergence. We also hypothesize that the difference in performance is caused by

the action-value estimation difficulty being different across the return formulations,

as discussed by Descause [9]. This difficulty difference means that we expect the

performance difference to get smaller as the VFA complexity is increased. In order

to assess our hypotheses, we experiment with four different VFA methods of vary-

ing complexity and with three different learning algorithms on three different tasks of

varying complexity. We investigate the performance of each formulation in terms of

the average rewards that we acquired at the time the VFA had converged and in terms

of how many steps were needed for the VFA to converge. This was performed by

Chapter 1. Introduction 3

looking at the average training curve of the best performing 30% of the hyperparame-

ter combinations sampled. We also consider the performance of each formulation with

near optimal hyperparameters by looking at the training curve of the single best per-

forming hyperparameter combination. The results from these two experiments do not

support our initial hypotheses and thus we form a new hypothesis relating the differ-

ences observed in performance of the two formulations to hyperparameter sensitivity.

We further validated this new hypothesis by looking at the distributions of the average

rewards acquired at convergence for both formulations and observing that the distribu-

tions for the average reward formulation were more narrow and centred around higher

values than the distributions for the discounted return formulation.

This report is divided into chapters. In Chapter 2, we give an overview and ex-

plain all background concepts that are used in this work. In Chapter 3, we provide a

description of the methods used for the the experiments and their implementations. In

Chapter 4, we present and discuss the the results from all experiment setups. Finally,

in Chapter 5, we summarize our findings and give some conclusive remarks.

Chapter 2

Background

2.1 Reinforcement Learning

The field of machine learning is commonly segmented into three general categories that

describe the way that machine learning models learn to solve a task. These three cate-

gories are supervised learning, unsupervised learning and reinforcement learning. The

first two categories learn using collected and pre-processed data that is available before

the model starts being trained. Reinforcement learning (RL) involves an agent solving

a task through sequential decision making inside a predefined environment. As it can

be understood from the name, the desired behaviour of the agent is learned through

reinforcement (rewarding desired behaviour and penalising undesired behaviour), sim-

ilar to the way that humans learn to behave. In the past decade, reinforcement learning

has grown in popularity [4] with very impressive achievements such as playing rule

based games with superhuman performance [1], learning how to walk without human

input [2] or learning how to manipulate a robotic arm to solve a Rubik’s cube [3]. A

more formal definition of RL problems and their components can be seen in Section

2.2.

2.2 Markov Decision Processes

In RL, problems are defined using Markov Decision Processes (MDPs) [11]. MDPs

are described by Sutton and Barto [6] as a formalisation of sequential decision mak-

ing in which actions not only affect immediate states and immediate rewards but also

future states and future rewards. An MDP is defined through its four components, the

state space S, the action space A, the environment dynamics, and the reward space

4

Chapter 2. Background 5

R. In MDPs, the entity which does the learning and is making decisions is called the

agent. At each time-step t, the agent interacts with the environment, which includes

everything that is not the agent [6]. This interaction comprises of the agent being in

a state St ∈ S taking an action At ∈ A and the environment responding by giving the

agent a new state to be in St+1 ∈ S and a reward Rt ∈ R. The state St+1 and the rewards

Rt returned to the agent at each time-step t are decided by the environment dynamics

which are defined as a conditional probability:

P(s′,r|s,a) .
= Pr{St = s′,Rt = r|St−1 = s,At−1 = a}

Additionally, the environment dynamics include the transition function defined as:

P(s′|s,a) .
= Pr{St = s′|St−1 = s,At−1 = a}= ∑

r∈R
P(s′,r|s,a)

as well as, the expected rewards function defined as:

r(s,a) .
= E[Rt |St−1 = s,At−1 = a] = ∑

r∈R
r ∑

s′∈S
P(s′,r|s,a)

An MDP is controlled through a policy π. A policy is a mapping between each state

and the probabilities of selecting each action from that state [6]. A policy can be

understood informally as the agent behaviour. As described in Sutton and Barto [6],

solving an RL task means finding a policy that maximises the reward acquired by the

agent.

2.3 Continuing and Episodic Tasks

RL problems can widely vary and for that reason they are divided into two main cat-

egories, describing the task’s temporal characteristics: continuing tasks and episodic

tasks. Episodic tasks are the most common type of tasks in reinforcement learning

and are characterised by the notion of a final time-step T or a final environment state

ST which practically divides the training time into episodes. An example of such a

task is the game of chess with the final state being a checkmate or a stalemate posi-

tion. Continuing tasks on the other hand don’t have the notion of a final time-step or

environment state. In such tasks, as the name suggests, the agent interacts with the en-

vironment continuously and indefinitely (T = ∞). An example of such a task is stock

trading, which is performed indefinitely with no moment at which the trading stops.

Chapter 2. Background 6

2.4 Average Rewards and Discounted Returns

As we described earlier, in reinforcement learning the agent learns through reinforce-

ment. Informally, as described by Sutton and Barto [6], the agent’s goal is to maximise

the total amount of reward it receives from the environment through their interaction.

Thus, at every time-step, the agent goal is to choose the action which maximises the

expected return Gt . For that reason, the way that the return is formulated is a very

important part in solving an RL problem.

A naive approach to return formulations would be to sum all the expected future

rewards as shown below.

Gt
.
= Rt+1 +Rt+2 + ...+RT

Such formulation would not be practical because those future rewards would grow

infinitely if the task is continuing or cyclical and there is no final state. This is imprac-

tical because, based on the environments reward function, Gt can be equal to ∞, −∞

or 0 for every t. For that reason, in most reinforcement learning environments, dis-

counted returns are used as the return formulation. This return formulation introduces

the concept of discounting, which is weighting future rewards based on their immedi-

acy. That means that immediate rewards given to the agent are more important (have

higher weight - lower discount factor) than potential future rewards. The discounted

return is defined in the equation below.

Gt
.
= Rt+1 + γRt+2 + γ

2Rt+1 + ...=
∞

∑
k=0

γ
kRt+k+1

where 0 < γ < 1 is the discount factor.

Another return formulation that exists for such continuing and cyclical tasks is

the average rewards formulation. In such formulation, the incremental average of the

rewards while following a policy, is used to evaluate the policy. The average reward

formulation is defined in the equation below:

Gt
.
=

∞

∑
k=0

Rt+k+1− r(π)

where r(π) is the incremental average reward obtained by following policy π. This is

updated every time-step using the update rule below:

r(π) = r(π)+β∗δ

Chapter 2. Background 7

with β is a weight variable that inflates the values of recent returns in the average and δ

being the error term from the action-value function update (further explained in Section

2.5).

In some tasks, the use of discounting is crucial for the agent to be able to solve a

task successfully. An example of such task would be stock investing and stock trading.

In investing, immediate monetary gains are seen as more valuable than future monetary

gains because the money earned can be re-invested in the market which may lead to

even more gains overall.

In other tasks though, prioritising the immediacy of the reward is not important for

solving the task, but may even actually hinder the agent’s performance. In such tasks,

average rewards are more commonly used. An example of such a task is Tetris [12]. In

Tetris, the agent is tasked to form horizontal lines by placing differently shaped blocks

inside a rectangular space. When horizontal lines are formed the blocks that made

those lines disappear and the score increases. The agent is able to acquire short term

mediocre reward by forming a complete line as fast as possible. But, the agent can also

acquire the long-term high reward by waiting and forming multiple complete lines at

the same time (known as a Tetris).

2.5 Learning Algorithms

As mentioned previously, the policy that achieves maximal return is learned through

training. During training, two functions are learned when using some RL learning

algorithms, the state-value function and the action-value function. The former, maps

each state to the expected return following policy π from that state and is defined

below:

V (St) := E[Gt |St]

The latter function, maps the expected return of each action at each state in the envi-

ronment to the respective action and state. This is defined formally below:

Q(st ,at) := E[Gt |st ,at]

Where Gt , is the expected return, at is the action evaluated at time-step t and st is

the environment state evaluated at time-step t. During training, the value of Q(St ,At)

is learned for each action and state, and thus by the end of training, it is hoped that

the agent can choose the best action for every state. Below we go over three learning

algorithms used to estimate the action-value function Q(St ,At). For all algorithms, we

Chapter 2. Background 8

consider an epsilon-greedy policy. With such policy, the agent chooses its next action

uniformly at random with a probability ε and greedily (chooses the action with the

highest action-value function) with a probability 1− ε.

2.5.1 Q-Learning

Q-Learning [13] falls into the category of off-policy learning algorithms. This means

that the optimal action-value function is directly approximated independently of the

agent’s policy [6]. In the case of Q-Learning, the next action considered in the update

rule is only chosen greedily. The update equation of Q-Learning using the two different

return formulations can be seen below:

Discounted Returns:

Q(St ,At)← Q(St ,At)+α [Rt+1 + γ∗maxaQ(St+1,a)−Q(St ,At)]︸ ︷︷ ︸
δt

where α represents the learning rate and γ the discount factor.

Average Rewards:

Q(St ,At)← Q(St ,At)+α [(Rt+1− r(π))+maxaQ(St+1,a)−Q(St ,At)]︸ ︷︷ ︸
δt

where α again represents the learning rate and δt represents the Temporal Difference

error between the previous estimate of the action-value function (Q(St ,At)) and the

current, better estimation of the action-value function (Rt+1 + γ ∗maxaQ(St+1,a) or

(Rt+1− r(π))+maxaQ(St+1,a)).

The Q-Learning algorithm pseudocode can be found in Appendix A.

2.5.2 SARSA

Contrary to Q-Learning, SARSA [13] is an on-policy learning algorithm. This means

that the next action in its update rule is chosen according the agent’s epsilon-greedy

policy. The update rules of SARSA using the two different return formulations can be

seen below.

Discounted Returns:

Q(St ,At)← Q(St ,At)+α [Rt+1 + γ∗Q(St+1,At+1)−Q(St ,At)]︸ ︷︷ ︸
δt

Chapter 2. Background 9

Average Rewards:

Q(St ,At)← Q(St ,At)+α [(Rt+1− r(π))+Q(St+1,At+1)−Q(St ,At)]︸ ︷︷ ︸
δt

The SARSA algorithm pseudocode can be found in Appendix A.

2.5.3 Overestimation Bias and Double Q-Learning

It has been argued by Van Hasselt et al. [14], Van Hasselt [15] and Dankwa and Zheng

[16], that when Q-Learning is used with discounted returns, the agent overestimates

the value function which leads to instability, reduction in the speed of convergence and

sometimes reduction in final performance. This is often referred to as ”Overestimation

Bias” and it was first addressed by Van Hasselt [15], by the introduction of Double

Q-Learning.

Double Q-Learning, similarly to Q-Learning, is an off-policy algorithm which uses

two different action-value functions QA and QB during training. In practice, one action-

value function is used to update the other action-value function. Which of the two

action-value functions is updated at the current time-step is chosen uniformly at ran-

dom. The update rule (when updating QA) for Double Q-Learning can be seen below:

Discounted Returns:
A′← maxaQA(St+1,a)

QA(St ,At)← QA(St ,At)+α [Rt+1 + γ∗QB(St+1,A′)−QA(St ,At)]︸ ︷︷ ︸
δt

Average Rewards:
A′← maxaQA(St+1,a)

QA(St ,At)← QA(St ,At)+α [(Rt+1− r(π))+QB(St+1,A′)−QA(St ,At)]︸ ︷︷ ︸
δt

The Double Q-Learning algorithm pseudocode can be seen in Appendix A.

2.6 Value Function Approximation

As it was previously discussed, reinforcement learning problems are formulated using

MDPs. MDPs are partly defined by the states S and the actions A that can be taken

from each state.

Chapter 2. Background 10

The expected return Gt of each action in each state is given by the action-value

function Q(St ,At). Traditionally, the action-value function is represented by a table or

matrix (referred to as the Q-table) whose dimensions are the environment’s states and

the environment’s actions. Methods that use such data structure for the action-value

function are called Tabular RL methods. In complex environments though, such as

chess whose state space complexity is 1042 [17], the state space and the action space

can be so large, that tabular RL methods are impractical. That is because of two main

reasons. Firstly, finding a policy that solves the task might require the agent to visit

all environment states and perform all actions multiple times in order to fully update

the Q-table. If the state and action space is too large, then that would take too much

time and thus the learning algorithm would not be able to converge within a reasonable

amount of time. Secondly, if the environment is too complex then the look-up table

will not be able to fit into the computers memory.

For these reasons, Value Function Approximation (VFA) is used instead of a look-

up Q-table. In VFA, a parameterised function of different environment features is used

to approximate the Q-table. During training, the parameters of this function are esti-

mated in order for the VFA to approximate the real value function. In the subsections

below, we explain the different VFA methods used in this report.

2.6.1 Linear VFA

The simplest, both conceptually and mathematically, VFA method that is seen in this

report’s experiments is linear VFA. In linear VFA, the approximate value function is

a linear function of the environment state feature vector x(s) = (x1(s),x2(s), ...,xd(s)).

Linear VFA approximates the value function by taking the inner product of the state’s

features vector x(s) and a weight vector w, which is the same size as the features vector.

Linear VFA’s formula can be seen below:

v̂(s,w) .
= wT x(s) .

=
d

∑
i=1

wixi(s)

Where v̂(s,w) is the approximate state-value function, w is the weight vector, x(s) is

the state’s feature vector and d is the length of the weight and feature vector.

2.6.2 Polynomial Basis Function VFA

Polynomial Basis Function VFA is not a completely different VFA method but rather

a method to increase the complexity of the functions that can be approximated by

Chapter 2. Background 11

linear VFA. This is done by expanding the state’s feature vector through raising the

features to a degree as well as taking the product of the combination of features. For

example, if the state’s s′ feature space consists of two features a and b, the original

feature vector will be x(s′) = [a,b] while the expanded feature vector when 2nd degree

polynomial basis functions are used will be x(s′) = [a,b,a2,b2,ab]. By the same logic,

when 3rd degree polynomial basis functions are used, the feature space will be x(s′) =

[a,b,a2,b2,ab,a2b,ab2,a3,b3].

2.6.3 Deep VFA

Deep learning VFA refers to the idea of using an artificial neural network (NN) to ap-

proximate the value function. This idea was popularised by Mnih et al. [18] with the

introduction of Deep Q-Networks and the achievement of playing Atari games with

human level performance. NNs can be thought of as a network of computational units

that are arranged in layers. These computational units can perform linear computations

and non-linear computations through the use of activation functions. The connections

between the units have weights, similar to the ones in linear VFA, which are tuned

through training to best approximate the value function. Each layer in an NN aims

at automatically extracting and weighting different features from the original feature

vector input or from the output of the layer previous to it. The first and simplest type

of neural network is the feedforward neural network, whose names refers to the com-

putations going ”forward” from layer to layer [19].

VFA methods, like the ones explained above, solve the problems caused by com-

plex environment as they do not have such large memory requirements. They also do

not require the agent to visit all states because a single update to the functions param-

eters affects the function’s output for the whole state space.

2.7 Related Work

The literature that has been produced which compares the empirical performance of

average rewards and discounted returns is limited. Theoretical work on the topic was

performed by Tsitsiklis and Van Roy [5], in which it was argued that the performance

of the two return formulations should be similar. The arguments presented in paper

though, apply to policy evaluation and not policy improvement and thus do not guar-

Chapter 2. Background 12

antee the same results in our experimental setup nor with the rest of the empirical work

done. Also, the arguments in the paper are purely theoretical and there are no empiri-

cal results to support them. A similar argument is done by Sutton and Barto [6], who

argue that in theory the two return formulations should not have differences in perfor-

mance, as optimizing discounted returns over the steady state distribution is similar to

optimizing average rewards. That is, because the two return formulations are inversely

proportional to each other by a factor of 1− γ as the average of the discounted returns

is always r(π)/1− γ.

The empirical work that is done on the topic argues that the two return formulations

perform differently, contradicting previous theoretical work. An empirical comparison

was made by Schwartz [8], in their 1993 paper which introduces R-Learning, a Q-

Learning alternative using average rewards [8]. In the paper, the authors find a perfor-

mance advantage for average rewards but the paper only involves simple tasks that do

not require VFA. These results were validated by Mahadevan [7], who conducted more

experiments with R-Learning on simple tasks with no VFA. Again it was concluded

that with the appropriate tuning, R-Learning was performing better than Q-Learning

in terms of average reward acquired as well as time needed for convergence. Addi-

tionally, in his MSc thesis, Descause [9] studied the empirical comparison between the

two return formulations in continuing tasks with VFA and further validated that there

was a performance difference between the two formulations. The author experimented

with two different learning algorithms (Q-Learning and SARSA) and two different

VFA methods (linear and deep learning) on three tasks. A consistent performance

advantage was observed for average rewards again both in terms of average rewards

acquired when the VFA had converged and the time needed for the VFA to converge.

The performance difference between the formulations was getting smaller as the VFA

complexity increased. It was hypothesised that the performance difference was caused

by the action-values being easier to estimate when using average rewards and even

though some empirical evidence supported the hypothesis it was not complete.

In general, there has been an increase in the number of papers studying average

rewards and introducing average reward based learning algorithms. In their recent

review, Dewanto et al. [20] go over a variety of model-free learning algorithms as well

as tasks in continuing environments. Additionally, two papers [21, 22] were presented

in 2021 International Conference on Machine Learning, again introducing learning

algorithms that optimised average rewards rather than discounted returns.

As mentioned in Chapter 1, this work is an extension of the work by Descause [9].

Chapter 2. Background 13

We extend the work by experimenting with Double Q-Learning, in order to eliminate

the effect that overestimation bias might have on the results. We also extend the work

by experimenting with two additional VFA methods, 2nd and 3rd degree polynomial

basis VFA, which should additionally test whether the performance difference between

the formulation is getting smaller as VFA complexity increases. Moreover, we train all

algorithms for more time-steps than what was done by Descause [9], in order to ensure

all VFA methods convergence in all experiment configurations. Finally, we investigate

the hyperparameter sensitivity as a factor of the formulations’ performance.

Chapter 3

Methodology

3.1 Learning Algorithms

We conduct experiments with the three algorithms that were introduced in Chapter 2,

namely, Q-Learning, SARSA and Double Q-Learning. Q-Learning and SARSA were

chosen for the sake of completeness, given that they are off-policy and on-policy al-

gorithms. As explained in earlier sections, Double Q-Learning was chosen to alleviate

instabilities and performance drops caused by overestimation bias. Because overes-

timation bias is something caused by the combination of Q-Learning and one of the

return formulations we are comparing, it was important to eliminate any of its effects

when comparing the two return formulations. This should provide more concrete re-

sults and make drawing conclusion from results easier.

As done by Descause [9], all the parameters of the three algorithms were reused

from the paper by Mnih et al. [13] except for the learning rate α, the discount factor γ

and the weight factor β. The methodology for sampling these hyperparameters for the

comparison is explained in Section 3.4. Asynchronous methods with multiple parallel

agents were used for training for all algorithms. Such methods allow the simultane-

ous training of multiple parallel agents across multiple environment instances while

using and updating the same value function [13]. Asynchronous methods were used

in order to prevent correlated updates to the value function. Correlated updates occur

when the environment feature vector between multiple VFA updates is very similar,

which can lead to overfitting [13, 18]. This is very common as consecutive states have

similar feature vectors. Correlated updates slow down or even prevent learning [13].

Thus, asynchronous methods enabled learning and reduced convergence time. For all

algorithms, 4 parallel agents were trained for 6 million steps across all of them, as

14

Chapter 3. Methodology 15

this was enough to assess performance at convergence. As done by Descause [9], we

used the same exploration method that was used by the original asynchronous methods

paper [13]: each parallel agent’s ε parameter was annealed to either 0.1, 0.001 or 0.5

with probabilities 0.4, 0.3 and 0.3 respectively. In this work though, the use of ran-

dom seeds, kept the value that each parallel agent’s ε was annealed to consistent across

experiments with the different return formulations. This ensured that no performance

advantage is given to either formulation based on the values that ε was annealed to.

Also, the epsilon decay is performed linearly over the last 80% of the training steps.

3.2 VFA Methods

For the return formulation comparison, four different VFA methods were experimented

with. These include linear VFA, linear VFA with 2nd degree polynomial basis func-

tions, linear VFA with 3rd degree polynomial basis functions and deep learning VFA.

Similarly to what was done by Descause [9], linear VFA was modeled as a feed-

forward neural network consisting of no hidden layers. The deep learning VFA was

modelled as a feed-forward neural network with 2 ReLU [23] activated, hidden layers

whose architectures changed with every task in order to scale to its complexity. This

was done by using (sizeinput− sizeout put)/2 neurons in each of the 2 hidden layers.

For task 3, a Convolutional Neural Network [24] architecture was used for the

deep learning VFA, similar to the one used by Descause [9]. The architecture involved

parallel processing with two parallel, ReLU activated, convolution layers. The first

convolution layer has a 3x3 mask and is followed by a Max Pooling layer [25] with a

2x2 mask, another convolution layer with a 3x3 mask and another Max Pooling layer

with a 2x2 mask. The second convolution layer has a 5x5 mask and is followed by just

one Max Pooling layer with a 2x2 mask. The output of the two parallel convolutional

layers was concatenated and passed through a ReLU activated, feed-forward neural

network with 50 neurons.

In order to use polynomial basis functions, the state’s feature vector was expanded

based on the degree of the basis functions. Additionally, the neurons of the linear

model input layer were increased to equal the size of the expanded state feature vector.

All VFA models were used with all learning algorithms.

Chapter 3. Methodology 16

3.3 Tasks

Three tasks of varying complexity were used. These tasks are the same tasks that were

used by Descause [9]. We chose to experiment with the same tasks because it would

aid in any result comparison between this work and the work of Descause [9] as it

would remove one factor of variability if different conclusions are drawn. All tasks are

continuing tasks with large enough state and action spaces that warranted the use of

VFA. More details on each task are given in the following subsections.

3.3.1 Task 1: Access-Control Queuing

The first task is an access-control queuing task originally proposed by Sutton and Barto

[6]. The task consists of a queue in which customers of different priorities wait before

getting assigned to one of ten servers. Each customer has priority 1, 2, 4, or 8 with all

being equally likely. The reinforcement learning agent has to decide whether or not he

will assign the customer at the front of the queue in a server. The reward that the agent

receives when a customer is successfully assigned to a server is equal to the customer’s

priority. The agent receives a reward of -1 if a customer is accepted when all servers

are full. At each time-step, a server becomes free with a probability of 0.06.

The state feature vector is an 11 element vector containing the priorities of the

first 10 elements of the queue and the number of available servers. Given 4 possible

priorities per customer and 10 servers in total, the state space consists of around 1.048∗
107 different states. Two actions are available to the agent at every time-step. The total

number of action-values is thus 2.096∗107. A visual representation of the environment

of task 1 can be seen in Figure 3.1.

3.3.2 Task 2: Factory Production Simulation

The second task is a factory production simulation task originally proposed by Ma-

hadevan et al. [26]. The task involves a factory machine that can produce either one

of five products. Each product can be assigned to a buffer whose size is conditioned

on which of the five products it stores (30, 20, 15, 15 and 10). Each product has dif-

ferent demand frequency and a different price (9, 7, 16, 20 or 25). Production failures

can occur which force a repair and halt production until repair is finished. Production

failures are avoided by periodic maintenance. During maintenance, no production can

be performed but that is for a shorter period than a repair. When no maintenance, no

Chapter 3. Methodology 17

Figure 3.1: A visualisation of task 1, with the first 10 customers in the queue shown

vertically and the servers shown horizontally. Each customer has a different colour

representing their priority, with lighter colours indicating higher priority.

production or no repair is performed, the agent must decide which of the five products

to produce or whether to start performing maintenance.

If production of either one of the five products is chosen, the production cannot stop

unless there is a production failure or the product’s buffer is full. The agent is given

reward equal to a products price if demand for that product arrives and if there is any

of that product stored in its buffer. The agent is given reward of -5000 if a production

failure occurs and is also given a reward of -500 if maintenance is performed.

The state feature vector is of size 6 and consists of the number of products in each

of the 5 product buffers and the time until the last repair or maintenance. Because, the

last feature is theoretically not bounded, we cant compute the size of the state space,

as it would be infinite. Assuming the last feature is on average in the range of [0,

1000], the state space would be equal to 1.35 ∗ 109. The action space consists of 6

actions. Thus the total number of action-values would be 8.1∗109. A visualisation of

the environment’s state representation can be seen in Figure 3.2.

Chapter 3. Methodology 18

Figure 3.2: A visualisation of task 2. The buffers and the amount of products they

have stored in them can be seen stacked vertically, while the number of days before a

maintenance or repair can be seen at the bottom.

3.3.3 Task 3: Catching Falling Objects

The third task is a game where the agent has to catch as many falling objects as possi-

ble and was introduced by Descause [9]. The task’s environment is a 10x10 grid where

objects fall vertically. The agent stays in the bottom row and can move only horizon-

tally in that row. Objects are placed in any row with 0.5 probability and are uniformly

placed across columns. At each time-step, the objects fall by one row, thus moving

towards the agent. If the agent is at the same column as an object, when the object has

reached the final row, a reward of 1 is acquired by the agent. The state’s feature vector

is the flattened 10x10 grid, thus a vector of length 100. Objects are represented by the

value of 255 on the feature vector. The first 9 rows can have 11 different configura-

tions each, as for each row an object can be present in one of the 10 columns or be

absent completely. The last row can have 100 configurations as there are 10 different

positions for the agent (1 for each column) and objects may appear in 10 different posi-

tions along the row. Taking all this into account, the state space consists of 2.35∗1011

states. Given that three actions are available to the agent (moving left, moving right

or not moving) at each time-step, the total number of action-values is 7.07 ∗ 1011. A

visualisation of the environment’s state representation can be seen in Figure 3.3.

Chapter 3. Methodology 19

Figure 3.3: A visualisation of task 3. The white blocks represent falling objects while

the grey block represents the agent.

3.4 Hyperparameter Selection

Hyperparameter selection was performed by running multiple runs of each learning

algorithm, VFA and task combination, each of which had randomly sampled parame-

ters. For task 1 and task 2, 100 sample runs were executed while for task 3, 50 sample

runs were executed. This hyperparameter search was done in order to ensure that all

methods tested and ultimately compared would be optimised to a similar extent. As

discussed previously, the hyperparameter that were tuned were the ones relating to the

update rules of the learning algorithms, namely the learning rate α, the weight factor β,

and the discount factor γ. The two former parameters were sampled from a log-uniform

distribution with 10−5 as the lower bound and 1 as the upper bound. The latter hyper-

parameters was sampled again from a log-uniform distribution but with 0 as the lower

bound and 1− 10−5 as the upper bound. The results of the random hyperparameter

sampling are visualized using scatter-plots in Appendix B.

3.5 Evaluation

In order to compare the performance of each formulation, we had to compare the agents

on the greedy policy that they have learned without random exploratory actions. In

Chapter 3. Methodology 20

order to do this, every 200,000 steps for task 1 and 2 and every 1,000,000 steps for

task 3, the VFA parameters were saved and 5 runs, of 25,000 steps each, were run

using the saved parameters. The final performance result would be the average of

these 5 runs. In order to maintain consistency between the evaluation runs for each

return formulation, 5 random seeds were used for the environments random events in

these evaluation runs.

3.6 Comparison

The comparison between the two formulations is done both qualitatively and quantita-

tively.

As mentioned in Chapter 1 and in our project proposal ??, our hypothesis is that

average rewards will perform better at convergence, in terms of average rewards ac-

quired, and will converge faster than discounted returns. We also hypothesize that

as the complexity of the VFA increases, the performance difference between the for-

mulations should decrease. In order to test these hypotheses we will compare the

performance of the two return formulations from the best performing 30% of the hy-

perparameter combinations found for each experiment configuration (combination of

algorithm and VFA method). This means that we will report the performance of the

top 30 hyperparameter combinations for task 1 and task 2 and of the top 15 hyperpa-

rameter combinations for task 3. This experiment setup allows the investigation of the

performance variability across multiple hyperparameters in terms of both the speed of

convergence and average reward acquired at convergence. This setup also allows the

validation of the results by Descause [9] as a similar setup was used in that work.

In order to further validate any performance differences that were seen from the

results of the first experimental setup and verify that such performance difference can

be seen when the optimal hyperparameters for each experiment configuration are cho-

sen, we also compare the performance from the single best performing hyperparameter

combinations for each experiment configuration. In order to eliminate the variability

in performance that can occur across runs, we run each experiment configuration with

its optimal hyperparameters 10 times with 10 different random seeds. The use of ran-

dom seeds ensures that random environment events stay consistent when the different

return formulations are tested in each experiment configuration.

For both of the last two experiment setups, training curves will be created that show

the average performance, as well as highlight the 95% confidence interval. This will

Chapter 3. Methodology 21

ensure that both the average rewards acquired at convergence and speed of convergence

can be assessed. Additionally, it will show the training stability of each experiment

configuration which will allow investigating the advantages of Double Q-Learning over

regular Q-Learning.

Lastly, we will analyze the hyperparameter sensitivity of each return formulation.

This is done by looking at the distribution of average rewards acquired at VFA conver-

gence through histograms.

In terms of quantitative evaluation, we use the Kolmogorov-Smirnov test [27] to

assess the following null hypothesis: the final performance of the two return formu-

lations comes from the same distribution. The Kolmogorov-Smirnov test was chosen

because it’s a statistical test for continuous distributions and because it does not make

any prior assumptions about the distributions [27]. We use the Kolmogorov-Smirnov

test on the results of the best performing 30% of the hyperparameters and the single

best performing hyperparameters.

3.7 Implementation Details

All implementations of the methods that are discussed in this chapter were made using

Python. Libraries such as Numpy [28] and MatPlotLib [29] were used for the creation

and visualisation of the environments as well as the learning algorithms. For all the

VFA methods, the PyTorch [30] machine learning framework and Scikit-Learn’s [31]

preprocessing module was used for expanding feature vectors when polynomial basis

VFA was used. In order to run all experiments in time, we utilized the university’s

computational cluster ”Eddie”, which was accessed through the university’s VPN ser-

vice and an SSH connection.

In Table 3.1, the number of parameters that have to be optimized for each VFA

method on each task is shown. It can be seen that the feature space expands greatly

with the increase of the degree in the polynomial basis VFA. In terms of number of

parameters, the 2nd and 3rd degree polynomial basis VFA methods are actually more

complex than the deep learning VFA. This does not necessarily translate to better per-

formance, as deep neural networks are known to be able to approximate complex func-

tions with fewer training steps and fewer parameters [19].

Chapter 3. Methodology 22

Task/VFA Task 1 Task 2 Task 3

Linear 24 42 303

2nd Degree Polynomial 156 168 15,453

3rd Degree Polynomial 728 504 530,553

Deep 128 126 6,428

Table 3.1: The number of parameters that need to be optimized for the VFA method on

each task

Chapter 4

Empirical Comparison Results

The results of the empirical comparison can be seen in the figures and tables below.

The discussion of these results is done in the following sections.

4.1 Best 30% of Hyperparameters Results

The average training curve of the best performing 30% of hyperparameter combina-

tions for task 1 can be seen in Figure 4.1 for task 2 it can be seen in Figure 4.2 and for

task 3 is can be seen in Figure 4.3.

From the results on task 1 it can be seen that there is a performance advantage

for average rewards both in terms of the average rewards acquired when the VFA has

converged as well as in terms of the time it takes for the VFA to converge. In terms

of variability of performance, between the best performing 30% of hyperparameter

combinations, it can be seen that in general, discounted returns have a wider 95% con-

fidence interval. The performance gap between the two return formulations seems to

be increasing as we increase the degree of the polynomial basis functions, but when the

deep neural network VFA is used the difference in performance is minimal. Interest-

ingly, double Q-learning does seem to stabilise the performance of regular Q-learning

when discounted returns are used but it also seems not to be performing as well as

regular Q-learning in terms of average rewards acquired at convergence. The statisti-

cal test results for task 1 (Table 4.1) also show that indeed the two return formulations

have different performance at convergence with the null hypothesis being rejected for

all experiment configurations.

The results that can be extracted from task 2 are not as clear or consistent as the

ones from task 1. This can be because of the environments increased complexity and

23

Chapter 4. Empirical Comparison Results 24

its large negative rewards in the case of repairs (-5000) and maintenance (-500), which

in the former case stem from random environment events. In some experiment con-

figurations, such as the experiments with linear VFA, 2nd degree polynomial VFA

and deep learning VFA, the performance of the two return formulations is similar at

the point of convergence. The time needed for convergence in these configurations is

different for each return formulation, but there is no consistency in which of the two

formulations is faster to converge. In the case of the 3rd degree polynomial VFA, for

Q-Learning and Double Q-Learning, discounted returns outperform average rewards

both in terms of speed of convergence and average rewards acquired at convergence.

When SARSA and 3rd degree polynomial VFA were used, discounted returns seemed

to diverge and thus have much worse performance than average rewards. Also in that

experiment configuration, the 95% confidence interval is very large indicating much

variability in performance between the best 30% of hyperparameters. The statistical

test results for task 2 (Table 4.2), validate the qualitative observations from the training

curves, indicating that in some cases (Q-Learning with linear, 2nd degree polynomial

basis and deep learning VFA) the performance between the two return formulations is

similar and in other cases (Q-Learning and SARSA with 3rd degree polynomial ba-

sis VFA), it is not. Interestingly, in the case of Double Q-Learning with 3rd degree

polynomial VFA, the statistical test shows that the two formulations have similar per-

formance while the respective training curve in Figure 4.2, shows a large performance

gap. This disagreement could be because of the large performance variability for aver-

age rewards that is indicated by the large 95% confidence interval.

The results from the experiments on task 3 (Figure 4.3), are again not as clear and

consistent as the ones from task 1. From the experiment configurations involving linear

VFA and polynomial basis functions VFA, it can be observed that after 20 million

training steps, the VFA has not converged and thus the average rewards acquired at

the end of training are similar to the average rewards acquired at the beginning of

training. When deep Learning VFA is used, a significant improvement in the average

rewards acquired at convergence can be seen. For the linear VFA, it can be argued that

more training steps might have been needed as the performance increases sharply at

the end of training. For the 2nd and 3rd degree polynomial basis VFA it can be argued

that because of the large number of trained parameters, again more training steps are

needed in order for the VFA to converge to a well-performing value function. None

of the return formulations performs better consistently when looking at the these three

VFA methods, and no observation can be made for the speed of convergence as no

Chapter 4. Empirical Comparison Results 25

configuration fully converged. When looking at the deep learning VFA, an advantage

of average rewards can be seen both in terms of speed of convergence and the average

rewards acquired at convergence. For both return formulations on deep learning VFA

though, the 95% interval is again very large indicating much variability in performance

across the best 30% of hyperparameters. The observations from the training curves

for task 3 are in line with the statistical test results (Table 4.3). For the first three

VFA methods, the null hypothesis is mostly accepted as the task is not solved and

performance does not improve for any of the formulations, thus remaining similar.

Interestingly, the null hypothesis is also mostly accepted for deep learning VFA. That

can be explained by the large variability in performance for each formulation, which

is similar to what was observed in the results of task 2.

The results discussed above validate the hypothesis that average rewards will have

better empirical performance than discounted returns but our findings across all tasks,

algorithms and VFA methods do not support our second hypothesis and are not as con-

sistent as the ones presented by Descause [9]. In that work, it was observed that using a

more expressive VFA made the gap of performance between the formulations smaller.

In our results, this is not consistently seen with the higher order polynomial VFA often

increasing the performance gap compared to linear VFA. As mentioned above, this

might be explained by the large number of trained parameters for the polynomial basis

VFAs.

A more consistent observation in our results is that in the cases where performance

was significantly lower for either formulation, the 95% confidence interval was large.

This indicates that there is variability in performance across the top 30% of hyperpa-

rameters, which is affecting the average training curve and can explain any differences

that can be seen in the performance. This large variability can mostly be seen with

discounted returns and across all tasks, algorithms and VFA methods. From this ob-

servation, we form the new hypothesis that the performance of discounted returns is

more sensitive to hyperparameters, and that in the case of optimal hyperparameters,

both return formulations should perform similarly.

In order to further investigate this new hypothesis, we experiment with the sin-

gle best performing hyperparameter combination for each experiment configuration

on each task. The results from such experiment show the performance when hyperpa-

rameters are close to optimal and thus should eliminate hyperparameter sensitivity as

a performance factor.

Chapter 4. Empirical Comparison Results 26

0 1 2 3 4 5 6 7

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
wa

rd
s

Linear

Q

0 1 2 3 4 5 6 7

SARSA

0 1 2 3 4 5 6 7

doubleQ

0 1 2 3 4 5 6 7

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
wa

rd
s

2nd Degree
Polynomial

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
wa

rd
s

3rd Degree
Polynomial

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
Million Steps

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
wa

rd
s

Deep

0 1 2 3 4 5 6 7
Million Steps

0 1 2 3 4 5 6 7
Million Steps

Average Reward Discounted Return

Figure 4.1: The average training curve for the best performing 30% of hyperparameter

combinations (out of the 100 sampled) of each experiment configuration on task 1. The

shaded area around each curve represent the 95% confidence interval.

Algorithm/VFA Q-Learning SARSA Double Q-Leanring

Linear 2.9e-14 1.1e-15 2.9e-14

2nd Degree Polynomial 2.9e-14 1.6e-17 1.6e-17

3rd Degree Polynomial 8.2e-12 5.7e-13 8.2e-12

Deep 0.0065 8.7e-5 9.2e-11

Table 4.1: The results of the Kolmogorov-Smirnov statistical test for task 1 when taking

into account the average performance across the best performing 30% of hyperparam-

eters. The colour indicates whether the null hypothesis can be rejected. Red indicates

rejection of the null hypothesis and green indicates acceptance

Chapter 4. Empirical Comparison Results 27

0 1 2 3 4 5 6 7
300

250

200

150

100

50

0

Av
er

ag
e

Re
wa

rd
s

Linear

Q

0 1 2 3 4 5 6 7

SARSA

0 1 2 3 4 5 6 7

doubleQ

0 1 2 3 4 5 6 7
300

250

200

150

100

50

0
Av

er
ag

e
Re

wa
rd

s

2nd Degree
Polynomial

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
300

250

200

150

100

50

0

Av
er

ag
e

Re
wa

rd
s

3rd Degree
Polynomial

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
Million Steps

300

250

200

150

100

50

0

Av
er

ag
e

Re
wa

rd
s

Deep

0 1 2 3 4 5 6 7
Million Steps

0 1 2 3 4 5 6 7
Million Steps

Average Reward Discounted Return

Figure 4.2: The average training curve for the best performing 30% of hyperparameter

combinations (out of the 100 sampled) of each experiment configuration on task 2. The

shaded area around each curve represent the 95% confidence interval.

Algorithm/VFA Q-Learning SARSA Double Q-Leanring

Linear 0.135 0.0346 1.3e-6

2nd Degree Polynomial 0.3929 0.0008 1.3e-6

3rd Degree Polynomial 5.7e-13 6.5e-9 0.0709

Deep 0.3929 0.2391 2.3e-5

Table 4.2: The results of the Kolmogorov-Smirnov statistical test for task 2 when taking

into account the average performance across the best performing 30% of hyperparam-

eters. The colour indicates whether the null hypothesis can be rejected. Red indicates

rejection of the null hypothesis and green indicates acceptance

Chapter 4. Empirical Comparison Results 28

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10

Av
er

ag
e

Re
wa

rd
s

Linear

Q

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10
SARSA

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10
doubleQ

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10
Av

er
ag

e
Re

wa
rd

s

2nd Degree
Polynomial

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10

Av
er

ag
e

Re
wa

rd
s

3rd Degree
Polynomial

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20
Million Steps

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

Re
wa

rd
s

Deep

0 5 10 15 20
Million Steps

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20
Million Steps

0.05

0.10

0.15

0.20

0.25

0.30

Average Reward Discounted Return

Figure 4.3: The average training curve for the best performing 30% of hyperparameter

combinations (out of the 50 sampled) of each experiment configuration on task 3. The

shaded area around each curve represent the 95% confidence interval.

Algorithm/VFA Q-Learning SARSA Double Q-Leanring

Linear 0.0003 0.9578 0.2391

2nd Degree Polynomial 0.9578 0.0346 0.8080

3rd Degree Polynomial 0.0003 0.2391 0.0009

Deep 0.0025 0.1350 0.1250

Table 4.3: The results of the Kolmogorov-Smirnov statistical test for task 3 when taking

into account the average performance across the best performing 30% of hyperparam-

eters. The colour indicates whether the null hypothesis can be rejected. Red indicates

rejection of the null hypothesis and green indicates acceptance

Chapter 4. Empirical Comparison Results 29

4.2 Best Hyperparameter Results

As discussed in Section 4.1, the new hypothesis from our initial results is that average

rewards are less sensitive to hyperparameters than discounted returns. To further vali-

date this hypothesis, we can try to eliminate the hyperparameter sensitivity factor from

the experiments and investigate whether there is still a performance gap between the

two return formulations. The results from task 1, 2 and 3 can be seen in Figure 4.4, 4.5

and 4.6 respectively.

The results on task 1 show that the performance of the two formulations is very sim-

ilar. The only time where that is not observed is for the 2nd and 3rd degree polynomials

where the performance gap between the two formulations is increasing in favour of the

average rewards. This performance difference, could be because the hyperparameters

tested in this experiment setup might not be the actual best performing hyperparameters

from the 100 sampled, but randomly displayed the best performance when sampling

was performed. This can also explain why the 95% confidence interval is larger for

discounted returns in these cases. The quantitative results that can be seen in Table

4.4, show that the difference in average rewards acquired at convergence between the

two formulations is statistically significant in 50% of the experiment configurations,

which is not enough to conclude that there is any difference in performance between

the formulations. As it was observed in the previous experiment setup, when looking

at the training curve of Q-Learning and Double Q-Learning with discounted return, we

can see an increase in training stability and average rewards acquired at convergence

for Double Q-Learning. This also indicates that the difference in performance between

discounted returns and average rewards in the case of Q-Learning, could be attributed

to the overestimation bias discussed in Section 2.5.

Similarly to the previous experiment setup in Section 4.1, it is very much difficult to

draw conclusions from the results on task 2 as there is a lot of instability and variance in

performance across runs. In some cases, such as when Q-Learning is paired with linear

VFA or SARSA is paired with 2nd degree polynomial basis VFA, the final performance

of discounted returns is better than of average rewards. In other cases, such as when

SARSA is paired with linear VFA or 3rd degree polynomial basis VFA the opposite

applies. This instability is also reflected in the statistical test results (Table 4.5) where

the null hypothesis is rejected in 75% of the experiment configurations. This instability

and sub-optimal performance might have been caused by the random seeds and the

fact that, as mentioned in Section 4.1, task 2 has large negative rewards that may easily

Chapter 4. Empirical Comparison Results 30

skew the average reward acquired downwards. Also, another cause could again be that

the hyperparameters used in these configurations were not the actual best performing.

On task 3, similarly to the results of task 1, the results are much more easily inter-

pretable. In most cases, the performance difference between the two formulations in

terms of average rewards acquired at convergence is minimal except for when Double

Q-Learning was paired with deep learning VFA, when SARSA was paired with poly-

nomial basis functions and when Q-Learning was paired with 3rd degree polynomial

basis VFA. Neither of the two formulations was performing better consistently across

these four experiment configurations, indicating that it could be again because non-

optimal hyperparameters were chosen, as discussed previously. These observation are

supported by the statistical test results (Table 4.6) which show that in the majority of

the experiment configurations, the null hypothesis is accepted.

Overall, the results from these experiments seem to contradict our initial hypothe-

ses but actually support our new hypothesis that was formed in Section 4.1. Indeed,

when hyperparameter variability was removed across runs of the same experiment con-

figuration, the difference in acquired reward at convergence between the two formu-

lations was significantly reduced or even statistically eliminated. By comparing the

results from the statistical tests across the two experiment setups, we can also see

that the null hypothesis is accepted more often when the hyperparameter variability is

removed than when the performance of multiple hyperparameters is averaged. The ob-

servation that when hyperparameters are optimal, then the difference in performance

across return formulations also validates the theoretical arguments made by Tsitsiklis

and Van Roy [5] who argued that discounted return should perform similar to average

rewards under the conditioned that the hyperparameters are tuned.

In order to further investigate and validate that our new hypothesis from Section

4.1 is correct, in Section 4.3 the distribution of the average reward acquired when the

VFA has converged will be investigated for both return formulation on all experiment

configurations.

Chapter 4. Empirical Comparison Results 31

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
wa

rd
s

Linear

Q

0 5 10 15 20 25 30

SARSA

0 5 10 15 20 25 30

doubleQ

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
wa

rd
s

2nd Degree
Polynomial

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
wa

rd
s

3rd Degree
Polynomial

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 5 10 15 20 25 30
x200,000 steps

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
wa

rd
s

Deep

0 5 10 15 20 25 30
x200,000 steps

0 5 10 15 20 25 30
x200,000 steps

Average Reward Discounted Return

Figure 4.4: The training curve for the single best performing hyperparameter combina-

tion (out of the 100 sampled) of each experiment configuration on task 1. The shaded

area around each curve represent the 95% confidence interval.

Algorithm/VFA Q-Learning SARSA Double Q-Leanring

Linear 0.1678 0.7869 0.4175

2nd Degree Polynomial 0.0002 0.0002 0.1678

3rd Degree Polynomial 0.0002 0.0123 0.0002

Deep 1.082e-5 0.1678 0.0524

Table 4.4: The results of the Kolmogorov-Smirnov statistical test for task 1 when tak-

ing into account the performance of the single best performing hyperparameters. The

colour indicates whether the null hypothesis can be rejected. Red indicates rejection of

the null hypothesis and green indicates acceptance

Chapter 4. Empirical Comparison Results 32

0 5 10 15 20 25 30
100

80

60

40

20

0

Av
er

ag
e

Re
wa

rd
s

Linear

Q

0 5 10 15 20 25 30

SARSA

0 5 10 15 20 25 30

doubleQ

0 5 10 15 20 25 30
100

80

60

40

20

0
Av

er
ag

e
Re

wa
rd

s

2nd Degree
Polynomial

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 5 10 15 20 25 30
100

80

60

40

20

0

Av
er

ag
e

Re
wa

rd
s

3rd Degree
Polynomial

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 5 10 15 20 25 30
x200,000 steps

100

80

60

40

20

0

Av
er

ag
e

Re
wa

rd
s

Deep

0 5 10 15 20 25 30
x200,000 steps

0 5 10 15 20 25 30
x200,000 steps

Average Reward Discounted Return

Figure 4.5: The training curve for the single best performing hyperparameter combina-

tion (out of the 100 sampled) of each experiment configuration on task 2. The shaded

area around each curve represent the 95% confidence interval.

Algorithm/VFA Q-Learning SARSA Double Q-Leanring

Linear 0.0002 1.082e-5 0.0123

2nd Degree Polynomial 0.0002 0.0002 0.0123

3rd Degree Polynomial 0.9944 1.082e-5 0.0021

Deep 0.7869 0.0123 0.7869

Table 4.5: The results of the Kolmogorov-Smirnov statistical test for task 2 when tak-

ing into account the performance of the single best performing hyperparameters. The

colour indicates whether the null hypothesis can be rejected. Red indicates rejection of

the null hypothesis and green indicates acceptance

Chapter 4. Empirical Comparison Results 33

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Av
er

ag
e

Re
wa

rd
s

Linear

Q

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
SARSA

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
doubleQ

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
Av

er
ag

e
Re

wa
rd

s

2nd Degree
Polynomial

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Av
er

ag
e

Re
wa

rd
s

3rd Degree
Polynomial

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35
x200,000 steps

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Av
er

ag
e

Re
wa

rd
s

Deep

0 5 10 15 20 25 30 35
x200,000 steps

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0 5 10 15 20 25 30 35
x200,000 steps

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Average Reward Discounted Return

Figure 4.6: The training curve for the single best performing hyperparameter combina-

tion (out of the 100 sampled) of each experiment configuration on task 3. The shaded

area around each curve represent the 95% confidence interval.

Algorithm/VFA Q-Learning SARSA Double Q-Leanring

Linear 0.1678 0.7869 0.1678

2nd Degree Polynomial 0.0524 0.0021 0.0524

3rd Degree Polynomial 0.0021 0.0123 0.0524

Deep 0.4175 0.0524 0.0123

Table 4.6: The results of the Kolmogorov-Smirnov statistical test for task 3 when tak-

ing into account the performance of the single best performing hyperparameters. The

colour indicates whether the null hypothesis can be rejected. Red indicates rejection of

the null hypothesis and green indicates acceptance

Chapter 4. Empirical Comparison Results 34

4.3 Hyperparameter Sensitivity

As it was discussed in Sections 4.1 and 4.2, the performance advantage in favour of

average rewards that was observed with our initial experiment setup and in the results

of Descause [9], seems to be significantly reduced when near optimal hyperparam-

eters are used for each return formulation. This observation goes against our initial

hypotheses but supports the new hypothesis that was formulated in the end of Section

4.1. Our new hypothesis states that average rewards are less sensitive to hyperparam-

eters than discounted returns, and that is why a performance difference is seen when

averaging the best performing 30% of hyperparameter combinations. In order to fur-

ther validate this hypothesis we will investigate the distribution of the average rewards

acquired at convergence for both return formulations. The spread of the distribution

will show whether a distribution is sensitive to hyperparameters. Thus, we expect the

performance distribution of the average rewards to be more narrow and be centred at a

higher average reward than the distribution of discounted returns.

The histograms from task 1 (Figure 4.7) indeed show that the distribution is more

narrow and positioned on higher rewards in the case of the average rewards formula-

tion. This shows that when average rewards are used as the return formulation, differ-

ent hyperparameter combinations have a similar, high performance at convergence. On

the other hand, when discounted returns are used, some hyperparameters achieve high

performance but the similarity in performance between the different hyperparameters

is not as great, thus lowering the overall average performance.

The same results can mostly be seen in the histograms from task 2 (Figure 4.8).

In most cases, the average rewards formulation’s distribution is more narrow and cen-

tred higher than the distribution of discounted returns. An exception to this is when

Q-Learning is paired with 3rd degree polynomial basis VFA, which reflects the ob-

servation from the training curve of the same experiment configuration in Figure 4.2.

This exception, can be again justified by the large negative rewards of task 2, which

are often received after random environment events (such as a production failure).

The histograms from task 3 (Figure 4.9) are more difficult to parse than the ones

from task 1 and task 2 mainly because the first three VFA methods had trouble solving

the task and thus the distributions are centered similarly on low scores. In the case

of deep learning VFA, the distributions for the average reward formulation are signif-

icantly more narrow and centered towards higher values than the distributions for the

discounted return formulation. This is again in line with what was expected and what

Chapter 4. Empirical Comparison Results 35

was seen for the previous tasks.

Overall, the results that can be extracted from the performance distributions of

both formulations are in line with our expectations. The results fully support our new

hypothesis that average rewards are less sensitive to hyperparameters than discounted

returns, as their distributions were more compact and overall centred on higher reward

values. This, along with the results from Section 4.2, provide good evidence in favour

of our new hypothesis. These results also provide some explanation for the results of

Descause [9] and of Section 4.1, where a significant difference in performance between

the two return formulations was seen.

Figure 4.7: Final performance histograms for the best performing 30% of runs of each

experiment configuration on task 1 (average rewards: top, discount returns: bottom)

Chapter 4. Empirical Comparison Results 36

Figure 4.8: Final performance histograms for the best performing 30% of runs of each

experiment configuration on task 2 (average rewards: top, discount returns: bottom)

Chapter 4. Empirical Comparison Results 37

Figure 4.9: Final performance histograms for the best performing 30% of runs of each

experiment configuration on task 3 (average rewards: top, discount returns: bottom)

Chapter 5

Conclusions

In this dissertation, we empirically compared the performance of average rewards and

discounted returns in complex environments that required the use of VFA. Our investi-

gation was setup to answer our research question: Is there a difference in the empirical

performance of the two formulations and why do we see performance differences in

practice?

We started with hypotheses that were motivated by previous empirical work done

by Schwartz [8], Mahadevan [7] and Descause [9]. Our first hypothesis was that av-

erage rewards would have better performance than discounted returns in terms of the

average rewards acquired at convergence and the speed of convergence. Our second

hypothesis was that the difference in performance would be because of the difference

in the difficulty of action-value estimation for each return formulation. Our results

from our first experiment, where we looked at the training curves of the best perform-

ing 30% of hyperparameter combinations out of all sampled, partially supported our

hypotheses and they were not entirely matching the results of Descause [9]. Our re-

sults did indeed show a difference in performance between formulations, which was

statistically validated using the Kolmogorov-Smirnov test. The performance difference

was in favour of average rewards but it did not get smaller as the VFA complexity was

increased. This latter observation, along with the observation that the 95% confidence

interval on discounted returns was often larger than on average rewards, motivated the

formulation of a new hypothesis. The new hypothesis attributed the performance dif-

ference to hyperparameter sensitivity and proposed that when optimal hyperparameters

are chosen, both formulations should acquire similar average rewards at convergence

and converge at the same speed. We then experimented with the single best perform-

ing hyperparameter combinations out of all sampled and observed that in many cases

38

Chapter 5. Conclusions 39

the performance of the two formulations was similar, which we again statistically val-

idated using the Kolmogorov-Smirnov test. Our third and final experiment setup, at

which the average reward acquired distributions were examined for each formulation,

also supported our new hypothesis with the distribution of average rewards being more

narrow and on higher values than the one of discounted returns.

A drawback of our investigation concerned the optimality of the hyperparameters

chosen as the best performing ones in our second experiment setup. This is what

mainly caused the instability of some results in Section 4.2, which prevented us from

drawing conclusions from these results. This problem was caused by only training

once with each hyperparameter combination when hyperparameter random sampling

was performed. Because of that, the final performance may have been influenced pos-

itively by random environment events which could have made some hyperparameter

combinations appear as the best performing ones while in reality they were not. Addi-

tionally, another drawback involved the number of sampled hyperparameter combina-

tions for experiments on task 3, which was 50. Given the large range from which we

sampled hyperparameters, 50 samples are too little for near-optimal hyperparameters

to be found.

To conclude, our experimental results indicate that indeed a performance differ-

ence can be seen between the two return formulations. This performance difference

though is because of the difference in hyperparameter sensitivity. With near optimal

hyperparameter tuning, the two formulations should perform similarly. We believe that

this work can be further extended by using more tasks, sampling more hyperparameter

combinations (especially in the case of experiments on task 3) and training with each

sampled hyperparameter combination multiple times. Also, experimentation with dif-

ferent VFA methods, especially with ones that have no exploding feature space (like

polynomial basis functions do), would be a worthwhile addition.

Bibliography

[1] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, and et al. Mastering atari, go, chess and shogi by planning with

a learned model. Nature, 588(7839):604–609, 2020. ISSN 0028-0836. doi:

10.1038/s41586-020-03051-4.

[2] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey

Levine. Learning to walk via deep reinforcement learning, 2019.

[3] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,

Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,

Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder,

Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s

cube with a robot hand, 2019.

[4] Karen Hao. We analyzed 16,625 papers to figure out where ai is headed

next, 2019. URL https://www.technologyreview.com/2019/01/25/1436/

we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/.

[5] John N. Tsitsiklis and Benjamin Van Roy. On average versus discounted reward

temporal-difference learning. Machine Learning, 49(2):179–191, Nov 2002.

ISSN 1573-0565. doi: 10.1023/A:1017980312899. URL https://doi.org/

10.1023/A:1017980312899.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. The MIT Press, second edition, 2018. URL http://incompleteideas.

net/book/the-book-2nd.html.

[7] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, al-

gorithms, and empirical results. Machine Learning, 22(1):159–195, Mar 1996.

40

https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://doi.org/10.1023/A:1017980312899
https://doi.org/10.1023/A:1017980312899
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Bibliography 41

ISSN 1573-0565. doi: 10.1007/BF00114727. URL https://doi.org/10.

1007/BF00114727.

[8] Anton Schwartz. A reinforcement learning method for maximizing undis-

counted rewards. pages 298–305, 12 1993. ISBN 9781558603073. doi:

10.1016/B978-1-55860-307-3.50045-9.

[9] Lucas Descause. Reinforcement learning with function approximation in contin-

uing tasks: Discounted return or average reward? Master’s thesis, 2019.

[10] Panagiotis Kyriakou. Informatics project proposal: Reinforcement learning with

function approximation in continuing tasks: Discounted return or average re-

ward? Master’s thesis, 2021.

[11] RICHARD BELLMAN. A markovian decision process. Journal of Mathematics

and Mechanics, 6(5):679–684, 1957. ISSN 00959057, 19435274. URL http:

//www.jstor.org/stable/24900506.

[12] Nintendo of America. Tetris, 1989.

[13] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In Maria Florina Balcan and Kil-

ian Q. Weinberger, editors, Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of Machine Learning Research,

pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL

http://proceedings.mlr.press/v48/mniha16.html.

[14] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. 09 2015.

[15] Hado Van Hasselt. Double q-learning. In J. Lafferty, C. Williams,

J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neu-

ral Information Processing Systems, volume 23. Curran Associates, Inc.,

2010. URL https://proceedings.neurips.cc/paper/2010/file/

091d584fced301b442654dd8c23b3fc9-Paper.pdf.

[16] Stephen Dankwa and Wenfeng Zheng. Twin-delayed ddpg: A deep reinforcement

learning technique to model a continuous movement of an intelligent robot agent.

pages 1–5, 08 2019. doi: 10.1145/3387168.3387199.

https://doi.org/10.1007/BF00114727
https://doi.org/10.1007/BF00114727
http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
http://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper/2010/file/091d584fced301 b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301 b442654dd8c23b3fc9-Paper.pdf

Bibliography 42

[17] CLAUDE E. SHANNON. Programming a computer for playing chess. Philo-

sophical Magazine, 41, Mar 1949.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-

forcement learning, 2013.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[20] Vektor Dewanto, George Dunn, Alireza Eshragh, Marcus Gallagher, and Fred

Roosta. Average-reward model-free reinforcement learning: a systematic review

and literature mapping. 10 2020.

[21] Yiming Zhang and Keith W. Ross. On-policy deep reinforcement learning for the

average-reward criterion, 2021.

[22] Yi Wan, Abhishek Naik, and Richard S. Sutton. Learning and planning in

average-reward markov decision processes, 2021.

[23] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th International Conference on

International Conference on Machine Learning, ICML’10, page 807–814, Madi-

son, WI, USA, 2010. Omnipress. ISBN 9781605589077.

[24] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object Recog-

nition with Gradient-Based Learning, pages 319–345. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 1999. ISBN 978-3-540-46805-9. doi: 10.1007/

3-540-46805-6 19. URL https://doi.org/10.1007/3-540-46805-6_19.

[25] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular object retrieval with

integral max-pooling of cnn activations, 2016.

[26] Sridhar Mahadevan, Nicholas Marchalleck, Tapas K. Das, and A. Gosavi. Self-

improving factory simulation using continuous-time average-reward reinforce-

ment learning. In Proceedings of the 14th International Conference on Machine

Learning, pages 202–210. Morgan Kaufmann, 1997.

[27] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A hitchhiker’s guide to

statistical comparisons of reinforcement learning algorithms, 2019.

http://www.deeplearningbook.org
https://doi.org/10.1007/3-540-46805-6_19

Bibliography 43

[28] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van

Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Rı́o, Mark Wiebe,

Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, War-

ren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.

Array programming with NumPy. Nature, 585(7825):357–362, September

2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/

s41586-020-2649-2.

[29] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-

ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. Pytorch: An imperative style, high-performance deep learning

library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing Systems 32,

pages 8024–8035. Curran Associates, Inc., 2019.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Appendix A

Appendix A: Learning Algorithms

Pseudocode

Algorithm 1 Q-Learning with discounted returns

Initialize Q(s,a), for all s ∈ S, a ∈ A, arbitrarily

Initialize S

while current step < maximum steps do
Choose A from S using ε-greedy policy on Q

Take Action A, observe R and S′

Q(S,A)← Q(S,A)+α[R+ γ∗maxa Q(S′,a)−Q(S,A)]

S← S′

end while

Algorithm 2 SARSA with discounted returns

Initialize Q(s,a), for all s ∈ S, a ∈ A, arbitrarily

Initialize S

Choose A from S using ε-greedy policy on Q

while current step < maximum steps do
Take Action A, observe R and S′

Choose A′ from S′ using ε-greedy policy on Q

Q(S,A)← Q(S,A)+α[R+ γ∗Q(S′,A′)−Q(S,A)]

S← S′, A← A′

end while

44

Appendix A. Appendix A: Learning Algorithms Pseudocode 45

Algorithm 3 Double Q-Learning with discounted returns

Initialize QA(s,a) and QB(s,a), for all s ∈ S, a ∈ A, arbitrarily

Initialize S

while current step < maximum steps do
Choose A from S using ε-greedy policy on QA and QB

Take Action A, observe R and S′

Choose randomly either UPDAT E(A) or UPDAT E(B)

if UPDAT E(A) then
a∗ = argmaxaQA(S′,a)

QA(S,A)← QA(S,A)+α[R+ γ∗QB(S′,a∗)−QA(S,A)]

else
a∗ = argmaxaQB(S′,a)

QB(S,A)← QB(S,A)+α[R+ γ∗QA(S′,a∗)−QB(S,A)]

end if
S← S′

end while

Appendix B

Appendix B: Hyperparameter Samples

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Linear

Q

10 5 10 4 10 3 10 2 10 1 100

SARSA

10 5 10 4 10 3 10 2 10 1 100

doubleQ

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

2nd Degree Polynomial

10 4 10 3 10 2 10 1 100 10 5 10 4 10 3 10 2 10 1 100

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

3rd Degree Polynomial

10 5 10 4 10 3 10 2 10 1 100 10 5 10 4 10 3 10 2 10 1 100

10 5 10 4 10 3 10 2 10 1 100

Beta

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Deep

10 5 10 4 10 3 10 2 10 1 100

Beta
10 5 10 4 10 3 10 2 10 1 100

Beta

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

Figure B.1: Randomly sampled hyperparameters for average rewards on task 1

46

Appendix B. Appendix B: Hyperparameter Samples 47

0.00706 0.94557 0.99724 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Linear

Q

0.07677 0.91056 0.99801 0.99999

SARSA

0.03539 0.96271 0.9963 0.99999

doubleQ

0.00317 0.96523 0.99827 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e
2nd Degree Polynomial

0.17154 0.96858 0.99813 0.99999 0.35623 0.96762 0.9988 0.99999

0.00838 0.96258 0.99904 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

3rd Degree Polynomial

0.08122 0.98326 0.99857 0.99999 0.05628 0.96761 0.99881 0.99999

0.04783 0.96207 0.99911 0.99999
Discount Factor

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Deep

0.17243 0.96509 0.99748 0.99999
Discount Factor

0.08164 0.96371 0.99908 0.99999
Discount Factor

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

Figure B.2: Randomly sampled hyperparameters for discounted returns on task 1

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Linear

Q

10 5 10 4 10 3 10 2 10 1 100

SARSA

10 5 10 4 10 3 10 2 10 1 100

doubleQ

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

2nd Degree Polynomial

10 5 10 4 10 3 10 2 10 1 100 10 5 10 4 10 3 10 2 10 1 100

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

3rd Degree Polynomial

10 5 10 4 10 3 10 2 10 1 100 10 5 10 4 10 3 10 2 10 1

10 4 10 3 10 2 10 1 100

Beta

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Deep

10 5 10 4 10 3 10 2 10 1 100

Beta
10 5 10 4 10 3 10 2 10 1 100

Beta

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

Figure B.3: Randomly sampled hyperparameters for average rewards on task 2

Appendix B. Appendix B: Hyperparameter Samples 48

0.00706 0.96064 0.99837 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Linear

Q

0.04888 0.95073 0.99888 0.99999

SARSA

0.25241 0.97946 0.99939 0.99999

doubleQ

0.02432 0.96523 0.9982 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e
2nd Degree Polynomial

0.01821 0.97866 0.99944 0.99999 0.06022 0.95961 0.99823 0.99999

0.00838 0.9653 0.99872 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

3rd Degree Polynomial

0.19419 0.97319 0.999370.99999 0.08342 0.9652 0.99898 0.99998

0.04783 0.95663 0.99876 0.99999
Discount Factor

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Deep

0.0397 0.98091 0.999650.99999
Discount Factor

0.07992 0.95793 0.99955 0.99999
Discount Factor

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

0

Figure B.4: Randomly sampled hyperparameters for discounted returns on task 2

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Linear

Q

10 5 10 4 10 3 10 2 10 1 100

SARSA

10 5 10 4 10 3 10 2 10 1 100

doubleQ

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

2nd Degree Polynomial

10 4 10 3 10 2 10 1 100 10 4 10 3 10 2 10 1 100

10 5 10 4 10 3 10 2 10 1 100

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

3rd Degree Polynomial

10 5 10 4 10 3 10 2 10 1 100 10 5 10 4 10 3 10 2 10 1 100

10 5 10 4 10 3 10 2 10 1 100

Beta

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Deep

10 4 10 3 10 2 10 1

Beta
10 5 10 4 10 3 10 2 10 1

Beta

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

Figure B.5: Randomly sampled hyperparameters for average rewards on task 3

Appendix B. Appendix B: Hyperparameter Samples 49

0.05187 0.93665 0.9995 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Linear

Q

0.16047 0.98578 0.9995 0.99999

SARSA

0.24651 0.97387 0.99791 0.99999

doubleQ

0.04519 0.94027 0.99623 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

2nd Degree Polynomial

0.33608 0.98466 0.99945 0.99998 0.05026 0.98128 0.99888 0.99999

0.03311 0.94778 0.99798 0.99999

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

3rd Degree Polynomial

0.02829 0.95728 0.9954 0.99998 0.35126 0.98033 0.99865 0.99999

0.35593 0.94169 0.99805 0.99999
Beta

10 4

10 2

100

Le
ar

ni
ng

 R
at

e

Deep

0.12807 0.97075 0.99913 0.99999
Beta

0.50142 0.98847 0.99938 0.99998
Beta

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

Figure B.6: Randomly sampled hyperparameters for discounted returns on task 3

	Introduction
	Background
	Reinforcement Learning
	Markov Decision Processes
	Continuing and Episodic Tasks
	Average Rewards and Discounted Returns
	Learning Algorithms
	Q-Learning
	SARSA
	Overestimation Bias and Double Q-Learning

	Value Function Approximation
	Linear VFA
	Polynomial Basis Function VFA
	Deep VFA

	Related Work

	Methodology
	Learning Algorithms
	VFA Methods
	Tasks
	Task 1: Access-Control Queuing
	Task 2: Factory Production Simulation
	Task 3: Catching Falling Objects

	Hyperparameter Selection
	Evaluation
	Comparison
	Implementation Details

	Empirical Comparison Results
	Best 30% of Hyperparameters Results
	Best Hyperparameter Results
	Hyperparameter Sensitivity

	Conclusions
	Bibliography
	Appendix A: Learning Algorithms Pseudocode
	Appendix B: Hyperparameter Samples

