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Abstract

In multi-agent systems, agents often rely on implicit modelling, where they infer the
behaviours of others through indirect observation, which can result in slower learning
and suboptimal performance. However, explicit agent modelling—where agents directly
anticipate and adapt to the strategies of their peers—has the potential to significantly
enhance learning efficiency and outcomes. This dissertation explores the potential of
explicit agent modelling within Multi-Agent Reinforcement Learning (MARL), with
a focus on autoencoder-based techniques designed to capture and predict opponent
behaviours with greater precision.

The study introduces autoencoder-based agent modeling as a method to balance
the complexities of policy reconstruction with the limitations of classification-based
approaches, while providing greater control over the agent modeling process. By
encoding and reconstructing key elements of opponent strategies—such as action
frequencies, rewards, and observations—this approach provides a structured and
adaptable framework for understanding and responding to other agents’ strategies.
Through systematic experimentation across a variety of environments, from cooperative
tasks to intricate competitive scenarios, the research evaluates the impact of these
modelling techniques on the performance of MARL algorithms.

This dissertation demonstrates the potential of autoencoder-based methods for agent
modelling in complex environments. A comprehensive evaluation reveals that when
these techniques are carefully tailored with appropriate reconstruction targets and latent
dimensions, they have the potential to enhance MARL algorithms. By accurately
capturing both short-term and long-term opponent strategies, agent modelling can lead
to potential improvements in learning outcomes. However, balancing model complexity
with computational efficiency is crucial. The findings provide valuable insights for
future research, emphasizing the importance of agent modelling in developing more
robust, adaptable, and intelligent multi-agent systems.
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Chapter 1

Introduction

The advancement of Multi-Agent Reinforcement Learning (MARL) has opened new
avenues for optimising decision-making processes where multiple agents interact within
complex environments. Each agent in these settings must learn to adapt to the strategies
and behaviours of others while pursuing its objectives. This complexity becomes
particularly pronounced in scenarios where agents lack direct access to the policies of
their peers, creating a need for sophisticated techniques that can predict and respond to
the actions of others. This process, known as agent modelling or opponent modelling [1],
involves creating models that anticipate the strategies of other agents, thereby enabling
more effective decision-making in multi-agent systems.

Recent studies (Albrecht and Stone [1], Papoudakis, Christianos, and Albrecht [2],
Baarslag, Hendrikx, Hindriks, et al. [3], Karpinskyj, Zambetta, and Cavedon [4]) have
highlighted the potential benefits of integrating explicit agent modelling techniques
into MARL algorithms, demonstrating improvements in sample efficiency, stability of
learning, and overall performance in complex environments. However, the literature
addressing the integration of agent modelling within the context of deep neural networks
and modern MARL algorithms remains relatively limited; for instance, papers such as
Papoudakis, Christianos, and Albrecht [2] that focus on the application of autoencoder
networks to agent modelling assume that the opponent agents’ policies are fixed or
non-learning. Moreover, a significant portion of the literature, including Baarslag,
Hendrikx, Hindriks, et al. [3] and Karpinskyj, Zambetta, and Cavedon [4], dedicated
to agent modelling is from a game-theoretic or video game perspective, aiming to
predict human player behaviour. Notably, there is a dearth of research that explores the
consideration of dynamic learning opponents within a MARL context. This dissertation
aims to bridge this gap by thoroughly investigating the impact of agent modelling on



MARL performance across a variety of environments, focusing on policy reconstruction
and classification-based modelling techniques.

This study will explore the nuances of agent modelling by implementing autoencoder-
based policy representations, which offer a modular and flexible approach to modelling
opponent behaviour. The use of autoencoders allows for the generation of latent
representations of opponent policies [2], which can be varied in complexity, thereby
providing insights into the effectiveness of different levels of abstraction in opponent
modelling. The methodology involves evaluating these techniques across a range
of MARL benchmark tasks and assessing the trade-offs between model complexity
and performance gains. The research will also address several key challenges in
MARL, such as handling partial observability, non-stationarity, and the balance between
computational overhead and performance improvements. By systematically analysing
these aspects, the study aims to provide a comprehensive understanding of the conditions
under which agent modelling enhances MARL and where it may introduce challenges.

The dissertation is structured to first establish a solid theoretical foundation in
reinforcement learning and multi-agent systems, followed by an extensive review of the
existing literature on agent modelling. This is followed by the methodology chapter,
which details the proposed integration of autoencoder-based agent modelling into MARL
algorithms and the experimental setup designed to test these integrations. The results of
these experiments will be analysed to identify key insights and trends, which will then
be discussed in the final chapters, culminating in recommendations for future research
directions.

This study showcases the potential of autoencoder-based agent modelling in a
multi-agent reinforcement learning (MARL) context. A comprehensive analysis of
various ablations in the proposed agent modelling system reveals that incorporating
action frequency and reward-based reconstruction leads to significant performance
improvements. Furthermore, the study thoroughly examines the interplay between
environment dynamics, algorithm configurations, and agent modelling configurations
and their impact on episodic returns. This analysis offers valuable insights into the
optimal settings for each hyperparameter configuration. Notably, the study highlights
the substantial potential of autoencoder-based agent modelling in complex and strategic
MARL environments, underscoring the importance of carefully selecting reconstruction
targets, latent dimensions, and loss functions to enhance agent modelling effectiveness.
Finally, a roadmap is presented for future research and to provide guidance on seamlessly
integrating autoencoder-based modelling into MARL tasks tailored to specific task and



algorithm characteristics.

1.1 Research Objectives

The primary objectives of this study are to evaluate the effectiveness of agent modelling
techniques in improving the episodic returns of MARL algorithms across various
environments, to analyze the impact of different levels of abstraction in opponent
modelling on the converged returns in MARL, to investigate the computational trade-offs
associated with integrating agent modelling into standard MARL algorithms, and to
explore the effects of environment characteristics, such as partial observability and agent
heterogeneity, on the efficacy of agent modelling.

1.2 Contributions

This dissertation makes several key contributions: It provides a comprehensive literature
review that synthesizes existing research on agent modeling in MARL, highlighting gaps
and identifying potential areas for future exploration. It also involves the development
and implementation of an autoencoder-based opponent modeling framework, which is
evaluated across various MARL environments. Additionally, the dissertation presents an
extensive experimental evaluation that offers insights into the effectiveness of different
modeling strategies and the conditions under which they provide the most benefit.
Finally, it includes a detailed analysis of the trade-offs between model complexity
and performance, offering guidance on the practical application of agent modeling
techniques in MARL.

In conclusion, this chapter has laid the groundwork for exploring the integration of
agent modelling into MARL algorithms. By identifying key challenges such as partial
observability, non-stationarity, and the need for computational efficiency, this study
aims to bridge the existing gaps in the literature. The research focuses on the use of
autoencoder-based techniques to create flexible and modular opponent models, which
are tested across various environments to assess their impact on MARL performance.
Through systematic experimentation and analysis, this dissertation seeks to advance the
understanding of agent modelling’s role in enhancing the effectiveness of multi-agent
systems.



Chapter 2

Background & Literature Review

This chapter introduces the concepts essential to this study, starting with reinforcement
learning and progressing to multi-agent reinforcement learning. Additionally, agent
modelling is explored in the context of reinforcement learning, followed by a compre-
hensive literature review outlining the work conducted in this field and identifying gaps
in the existing research. This discussion culminates in a discussion of the reviewed
literature, highlighting key insights and establishing the foundation for subsequent
chapters.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning where an agent learns to
make decisions by performing actions and receiving feedback in the form of rewards.
Over time, through trial and error, the agent optimises its action selection to maximize
returns. More formally, RL can be defined as the optimal control of a Markov Decision
Process (MDP) [5], which is commonly used as a mathematical framework to model
decision-making processes. An MDP comprises the following components:

• State space (𝑆): The set of states of the environment in which the agent can exist.

• Action space (𝐴): The set of actions that the agent can take.

• Transition function (𝑃(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)): The transition probability, or the likelihood
of the agent transitioning to state 𝑠𝑡+1 from state 𝑠𝑡 upon taking action 𝑎𝑡 .

• Reward function (𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)): The reward or penalty (negative reward)
received by the agent when transitioning from state 𝑠𝑡 to state 𝑠𝑡+1 via action 𝑎𝑡 .



The goal of reinforcement learning is to find an optimal policy 𝜋∗(𝑎𝑡 |𝑠𝑡), which
is a function that defines the probability of taking action 𝑎𝑡 in state 𝑠𝑡 . The policy
represents the solution to the MDP, guiding the agent’s actions to maximize the expected
cumulative rewards over time.

𝜋∗ = argmax
𝜋

E


∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) | 𝜋


where:

• 𝑡 is the time step,

• 𝛾 is the discount factor, 0 ≤ 𝛾 ≤ 1, which determines the importance of future
rewards.

In conclusion, RL aims to find an optimal policy that maximises the expected
cumulative reward over time by interacting with the environment and learning from the
observed rewards.

2.2 Multi-Agent Reinforcement Learning

RL can be extended to Multi-Agent Reinforcement Learning (MARL), where multiple
agents interact within an environment. Each agent must now make decisions that
consider not only the environment but also the interactions with other agents. In the
context of MARL, the problem is modelled using Markov Games or Stochastic Games
[6], [7], which are extensions of MDPs.

A Markov Game for 𝑁 agents can be defined as:

• State space (𝑆): The set of all possible states of the environment.

• Action space (𝐴𝑖): The set of all possible actions for each agent 𝑖 ∈ {1,2, . . . , 𝑁}.

• Transition function (P): A probability function 𝑃(𝑠′|𝑠, 𝑎1, 𝑎2, . . . , 𝑎𝑁 ) that defines
the probability of transitioning from state 𝑠 to state 𝑠′ given the joint actions
(𝑎1, 𝑎2, . . . , 𝑎𝑁 ) of all agents.

• Reward function (𝑅𝑖): A function 𝑅𝑖 (𝑠, 𝑎1, 𝑎2, . . . , 𝑎𝑁 , 𝑠
′) that gives the immediate

reward received by agent 𝑖 after transitioning from state 𝑠 to state 𝑠′ due to the
joint actions (𝑎1, 𝑎2, . . . , 𝑎𝑁 ).



In this multi-agent setting, the goal for each agent is to find an optimal policy
𝜋∗
𝑖
(𝑎𝑖 |𝑠), which is a function that defines the probability of agent 𝑖 taking action 𝑎𝑖 in

state 𝑠. This joint policy represents the solution to the Markov Game, guiding each
agent’s actions to maximise their expected cumulative rewards, considering the strategies
of all other agents. Formally the game would reach a Nash Equilibrium [8] with an
optimal joint policy when,

𝜋∗𝑖 = argmax
𝜋𝑖

E


∞∑︁
𝑡=0

𝛾𝑡𝑅𝑖 (𝑠𝑡 , 𝑎1,𝑡 , 𝑎2,𝑡 , . . . , 𝑎𝑁,𝑡 , 𝑠𝑡+1) | 𝜋1, 𝜋2, . . . , 𝜋𝑁


where, 𝑡 is the time step, 𝛾 is the discount factor, 0 ≤ 𝛾 ≤ 1, which determines the
importance of future rewards.

In multi-agent environments, each agent perceives a constantly changing environment
because other agents are also learning and updating their policies, leading to the issue
of non-stationary environments [9]. This dynamic makes it challenging for any single
agent to converge on an optimal policy. Explicit agent modelling can help manage this
complexity by enabling agents to more effectively predict and adapt to the actions of
others.

Partial observability further complicates multi-agent reinforcement learning (MARL).
Agents often have limited views of the environment and the states and actions of other
agents, which can lead to suboptimal decision-making. Explicit agent modelling can
mitigate this by allowing agents to infer hidden information and better predict the actions
of others. Coordination and cooperation are also critical in many MARL scenarios
where agents must align their strategies to achieve common goals. Without explicit
modelling, agents may struggle to coordinate effectively, resulting in conflicts and
inefficiencies. By modelling other agents, individuals can better anticipate the actions
and intentions of their peers, enhancing overall coordination.

Adaptation to diverse strategies is essential in environments with heterogeneous
agents that possess different capabilities. Explicit agent modelling can help agents
develop flexible and robust policies that can handle a variety of behaviours exhibited
by other agents by explicitly guiding them to model and predict such behaviours.
Additionally, the credit assignment problem, which involves determining which agent’s
actions contributed to a particular outcome, adds another layer of complexity when
learning in a multi-agent setting. Explicit agent modelling can address this issue
by providing a clearer understanding of the interaction dynamics and individual



contributions to collective rewards.
Incorporating explicit agent modelling into MARL algorithms can help overcome

these challenges in multi-agent settings. By predicting and accounting for the behaviours
and strategies of other agents, MARL algorithms can achieve better performance,
stability, and coordination in complex multi-agent environments.

2.3 Agent Modeling

Agent modelling, also known as opponent modelling, refers to the explicit modelling
of the behaviours of other agents within a multi-agent environment. This approach
contrasts with most existing Multi-Agent Reinforcement Learning (MARL) algorithms,
which typically rely on the implicit modelling of opponents. In implicit modelling,
agents learn about the behaviours and strategies of other agents indirectly by analyzing
patterns in the environmental observation data they receive during interactions. For
example, an agent may observe changes in the environment that result from the actions
of others and adjust its strategy accordingly without explicitly modelling the intentions
or policies of those agents.

However, this implicit approach has limitations. It generally requires more data and
interactions to effectively learn about the behaviours of other agents, as it lacks direct
mechanisms for understanding or predicting opponents’ strategies. This inefficiency
in sample usage can slow down the learning process and make it more challenging to
achieve optimal performance, particularly in complex environments where the dynamics
between agents are intricate and not easily inferred from observations alone.

Recognizing these limitations, researchers have hypothesized that implicit modelling
may be less efficient in learning accurate representations of opponent behaviours due to its
reliance on indirect inference. As a result, there has been a growing focus on introducing
explicit methods of agent modelling into MARL algorithms. Explicit modelling involves
directly incorporating strategies that predict or simulate the actions and policies of other
agents. This approach can provide clearer insights into the behaviours of opponents
and allow for more precise and proactive adjustments in strategy, potentially leading to
improved performance in complex, multi-agent environments.

This section provides a comprehensive review of the existing literature on both
implicit and explicit agent modelling approaches. It highlights the differences between
these methods, discusses their respective advantages and challenges, and identifies
gaps that present opportunities for further research. This analysis lays the groundwork



for potential areas of focus in this dissertation, particularly in the development and
evaluation of more effective agent modelling strategies within MARL.

2.3.1 Modelling Agents with Deterministic Finite Automata

Model-based approaches to opponent modelling have been explored as methods for
developing effective interactive strategies in classical multi-agent systems. One such
approach involves representing opponent strategies as Deterministic Finite Automata
(DFA)—a mathematical model characterised by a finite set of states and transitions that
determine an agent’s responses to different inputs [10]. These models are particularly
suited for environments where agents are assumed to be selfish and rational, seeking to
maximize their cumulative rewards.

Interactions in such environments can be framed as repeated two-player games,
where each agent’s goal is to maximise its expected cumulative rewards. To achieve this,
agents construct models of their opponents’ strategies by observing their behaviours and
representing them as finite automata. This approach allows agents to use the observed
strategies to inform and refine their own policies.

The optimal policy against a given model of opponent strategies can be determined
through dynamic programming [11]. In this context, agents iteratively update their
models based on new observations, gradually improving their predictions of opponents’
future actions. This dynamic updating process enables agents to continuously refine
their policies as they gather more data about their opponents.

The underlying mathematical framework includes a formal representation of the
game between two agents, 𝐺 = ⟨𝐴1, 𝐴2, 𝑅1, 𝑅2⟩, where 𝐴𝑖 is the finite set of actions
available to agent 𝑖, and 𝑅𝑖 represents the reward function of agent 𝑖. The expected
cumulative reward for agent 𝑖 can be expressed as:

𝑉𝑖 (𝜋𝑖, 𝜋−𝑖) =
∞∑︁
𝑘=𝑡

𝛾𝑘−𝑡𝑅𝑖 (𝑠𝑘 , 𝑎𝑘𝑖 , 𝑎𝑘−𝑖) (2.1)

where 𝜋𝑖 is the strategy (policy) of agent 𝑖, 𝜋−𝑖 represents the strategies (policies) of the
opponents (all agents except 𝑖), 𝛾 is the discount factor, and 𝑅𝑖 (𝑠𝑘 , 𝑎𝑘𝑖 , 𝑎𝑘−𝑖) is the reward
function that gives the immediate reward received by agent 𝑖 at time 𝑘 for being in state
𝑠𝑘 and taking action 𝑎𝑘

𝑖
while the opponents take actions 𝑎𝑘−𝑖.

To determine the optimal strategy 𝑀opt against a given opponent model 𝑀, the
problem is transformed into a Markov decision process (MDP). This transformation



involves incorporating the opponent’s predicted action selections into the environment
model, effectively reducing the two-player game to a single-agent MDP. The agent can
then solve this MDP using dynamic programming or reinforcement learning techniques
to identify the best sequence of actions that maximizes its expected rewards over time.

In the context of learning DFAs without supervised learning, the 𝑈𝑆− 𝐿∗ (Unsu-
pervised Learning) algorithm, based on 𝐴𝑛𝑔𝑙𝑢𝑖𝑛′𝑠 𝐿∗ [12], provides a mechanism for
agents to learn a DFA incrementally, refining the automaton whenever a counterexample
is encountered. This allows the model to improve its accuracy over time, particularly in
environments with limited complexity, where such a heuristic approach can effectively
match the opponent’s behavioural patterns.

Model-based approaches utilizing DFAs and dynamic programming have shown
promise in enabling agents to learn and adapt their strategies effectively in multi-agent
environments with complex and evolving opponents. Although these initial methods
were limited to specific frameworks, they laid the groundwork for enhancing agent
interactions in environments characterized by uncertainty and dynamic conditions.

2.3.2 Opponent Modelling in Negotiation and Strategic Interactions

Opponent modelling has been explored in various competitive settings, such as automated
bilateral negotiations, where agents engage in strategic interactions to resolve mutual
concerns [3]. In these scenarios, agents typically have opposing objectives, and the
outcome is shaped by their strategic choices. The primary goal for each agent is to
improve their outcome relative to the status quo or Nash equilibrium [8]. A significant
challenge in these environments is the lack of complete information about the opponent’s
strategies and intentions, which is particularly critical in competitive contexts. Accurate
predictions of the opponent’s strategy can lead to better individual outcomes and prevent
exploitation by the opponent.

Negotiation scenarios are often partially observable, with limited visibility into the
preferences, strategies, or actions of the counterpart. Here, opponent modelling becomes
essential, as it allows agents to infer missing information and anticipate the opponent’s
moves, thereby enabling more informed and strategic decisions. By constructing a model
of the opponent, agents can overcome the limitations imposed by partial observability,
leading to more effective negotiation strategies.

Unlike heuristic-based approaches (as in Carmel and Markovitch [10]), more recent
work has focused on learning methods for opponent modelling, including Bayesian



learning, non-linear regression, kernel density estimation, and neural networks. These
methods provide a more structured and data-driven approach to capturing opponent
behaviour. In the context of automated negotiations, core motivations for opponent
modelling can be identified, such as preference estimation, strategy prediction, and
opponent classification [3].

Preference estimation involves inferring the opponent’s goals, rewards, or utility
functions, allowing an agent to anticipate actions that the opponent is likely to take to
maximize their outcomes. This approach provides long-term insights into opponent
strategies, making it particularly effective in dynamic environments where core objectives
remain consistent despite contextual changes.

Strategy prediction focuses on forecasting the sequence of future actions the opponent
might follow, enabling the agent to prepare for and counter specific moves. This method
offers tactical precision and adaptability to immediate changes in the environment, but
it may introduce challenges in complex settings where short-term action distributions
appear non-stationary.

Opponent classification categorizes different types of opponents, such as aggressive,
defensive, or risk-averse, allowing agents to tailor their responses based on these
classifications. This approach simplifies the modelling process, making it scalable
and adaptable to new opponent types, though it may risk generalizing opponents and
misclassification.

In automated negotiations, these modelling approaches can be applied to learn key
attributes such as the acceptance strategy, deadline, preference profile, and bidding
strategy of the opponent. For example, learning the acceptance strategy helps optimize
proposal timing, while modelling the opponent’s deadline can be leveraged to apply
strategic pressure as negotiations progress. Understanding the opponent’s preference
profile allows for tailored offers that are more likely to be accepted, and anticipating the
opponent’s bidding strategy enables the agent to optimize its own offers.

Ultimately, the key takeaway from this study is the importance of preference
estimation and reward modelling, which are central to the opponent modelling methods
utilized later in this research (Chapter 3).

2.3.3 Opponent Modeling in MARL Setting

Albrecht and Stone [1] provide a more comprehensive survey of opponent modelling,
specifically within the context of learning algorithms in multi-agent systems. The



authors establish potential underlying assumptions in modelling methods and classify
various opponent modelling approaches based on the different models surveyed in the
(relatively modern, compared to surveys of heuristic methods in Carmel and Markovitch
[10]) literature.

The discussion here is on the underlying assumptions that help understand the
applicability, limitations, and open challenges of these modelling methods, which
further assist in building up to the classification of opponent modelling (classification
taken from Albrecht and Stone [1]):

• Deterministic vs Stochastic Action Choices: Deterministic actions have a
probability of 1 for each trajectory, simplifying modelling but missing complexities
like randomization and action selection errors, which stochastic models capture
better.

• Fixed vs. Changing Policy: Fixed strategies are easier to model but miss the
complexity of adaptive, dynamic learning models.

• Decision Factors Known vs. Unknown: Unknown decision factors make
modelling more challenging and less reliable, as seen in complex environments
like multi-agent stock trading.

• Independent vs. Correlated Action Choices: Independent actions are simpler
to model, but correlated actions, common in cooperative settings, require more
complex models.

• Common vs. Conflicting Goals: Shared goals simplify modelling, while
conflicting goals add complexity, influencing how actions are interpreted.

Furthermore, underlying assumptions about the environment also impact the design
of opponent modelling, ranging from the order of action selection and observability
to the representation of states and actions. These assumptions are further explored in
Chapter 3 of the dissertation. Based on these assumptions, both for the agents and,
to a lesser extent, the environment, the authors propose a comprehensive system of
classification (Table A.1) of opponent modelling methods using existing literature.
This system, along with Section 3.1, has been used as a guiding classification for the
work proposed and undertaken in this dissertation. The authors highlight several open
problems in the field, some of which are particularly relevant to this dissertation:



• Synergistic Combination of Modeling Methods: This involves exploring how
different modelling approaches can be integrated to leverage their respective
strengths, an area this study addresses by combining multiple methods to enhance
overall performance.

• Policy Reconstruction under Partial Observability: Developing techniques for
effective policy reconstruction in scenarios with partial observability, which is a
significant focus of this work. This dissertation explores methods to reconstruct
policies where agents lack complete information about the environment or other
agents’ actions.

• Modelling Changing Behaviors: Tracking and predicting changing behaviours in
adaptive agents is critical in dynamic environments. This dissertation delves into
modelling these evolving strategies to improve agent interaction and adaptation.

This dissertation specifically addresses the challenges mentioned above. These
aspects are central to the research and will be discussed in greater detail in Chapter 3.

2.3.4 Autoencoder-Based Opponent Modeling

Building on the concept of policy reconstruction, a latent representation generated by
an autoencoder network—trained to predict the opponent’s actions and observations
based on the local observations and actions of the ego agent—can be used to condition
the agent’s policy to infer opponent policies. The term "ego agent" refers to the agent
that is being actively controlled and trained in the environment. The core idea is
that the autoencoder’s latent space captures the underlying structure and patterns of
interaction dynamics. This enables the ego agent to predict and respond more effectively
to opponent behaviour by leveraging a compact and informative representation of the
observed data.

To understand the methodology discussed, it is essential to first grasp the concept of an
autoencoder and its role in this context. An autoencoder is a type of neural network used
to learn efficient encodings of input data. It consists of two main components: an encoder
and a decoder. The encoder compresses the input data into a latent representation—a
compact, encoded version of the input that captures its most salient features. This
latent representation, denoted as 𝑧𝑡 in our context, is crucial because it encapsulates
the interaction dynamics between the ego agent and its opponents in a compressed
form. The decoder then reconstructs the original data from this latent representation.



Figure 2.1: "Diagram of LIAM architec-
ture. The two solid-line rectangles show the
components of LIAM that are used during
training and during execution, respectively."
(Adapted from Papoudakis, Christianos, and
Albrecht [2])

In the framework depicted in Fig-
ure 2.1, the encoder network processes
the ego agent’s observations and ac-
tions to generate this latent variable 𝑧𝑡 ,
which is then used to predict or recon-
struct the opponents’ actions and ob-
servations. The decoder in this archi-
tecture has two reconstruction heads:
one for reconstructing the opponent’s
observations ( 𝑓 𝑜𝑢 ) and another for re-
constructing the opponent’s action dis-
tributions ( 𝑓 𝜋𝑢 ).

The reconstruction loss for these
tasks differs based on the nature of the data being reconstructed. For continuous data,
such as observations, the Mean Squared Error (MSE) is typically used, as it is suitable
for regression tasks where the goal is to minimize the squared differences between
predicted and actual values. On the other hand, for discrete data, like action distributions,
the Cross-Entropy loss is more appropriate, as it is designed for classification tasks
where the objective is to maximize the probability of the correct class (in this case, the
correct action). These loss functions are combined to form the total loss L𝐸𝐷 , which is
minimized during training.

The advantage of using an autoencoder in this manner lies in its ability to capture
the underlying structure of the data, providing a powerful tool for the ego agent to
predict and adapt to the opponents’ strategies. This is particularly important in complex
multi-agent environments, where understanding and anticipating opponents’ actions can
significantly enhance the agent’s performance.

This approach is explored in the work of Papoudakis, Christianos, and Albrecht [2],
where the authors propose Local Information Agent Modeling (LIAM). In their setup,
the environment is divided into controlled agents—referred to as ego agents—who learn
both policies and opponent models, and modelled agents, which have fixed heuristic
policies. The controlled agent (or ego agent) is the focus of the learning process, while
the other agents’ strategies are static and serve as the environment’s conditions. These
modelled agents are treated as a single combined entity for modelling purposes.

The policy for the controlled agent, 𝜋𝜃 , is parameterized by 𝜃 and is optimized to



maximize the average return against the fixed policies of the modelled agent, under the
assumption that these policies remain constant:

argmax
𝜃

E𝜋𝜃 ,𝜋
−1,𝑘∼𝑢(Π)


𝐻−1∑︁
𝑡=0

𝛾𝑡𝑟1
𝑡+1

 (2.2)

where 𝑟1
𝑡+1 is the reward received by the controlled agent (ego agent), 𝐻 is the episode

length, 𝛾 ∈ (0,1) is the discount factor, Π represents the set of fixed policies, 𝜋 is the
policy for the controlled agent, and 𝜋−1 denotes the fixed policy for the modelled agents.
The primary goal is to learn the relationship between the trajectory of the controlled
agent and that of the modelled agents.

The autoencoder loss is defined as:

L𝐸𝐷 =
1
𝐻

𝐻∑︁
𝑡=1

[(
𝑓 𝑜𝑢 (𝑧𝑡) − 𝑜−1

𝑡

)2
− log 𝑓 𝜋𝑢 (𝑎−1

𝑡 | 𝑧𝑡)
]

where 𝑧𝑡 = 𝑓𝑤 (𝑜1:𝑡 , 𝑎1:𝑡−1)

(2.3)
where 𝑓 𝑜𝑢 is the observation reconstruction head of the decoder, 𝑓 𝜋𝑢 is the policy
reconstruction head of the decoder, and 𝑓𝑤 represents the encoder. One important
point in such a system is that the weights and output dimensions of the decoder heads
change linearly with the number of opponent agents. The latent variable 𝑧 (from
equation 2.3) from the encoder is then fed into the RL algorithm for the controlled agent,
which in Papoudakis, Christianos, and Albrecht [2] was the Advantage Actor-Critic
algorithm (A2C) [13]. This approach can be similarly extended to other RL algorithms
by conditioning the policies on the latent variable input along with the controlled agent
trajectories.

The authors demonstrated the performance improvement in LIAM compared to
non-agent modelling baselines, as well as compared to other agent modelling baselines
such as Full Information Agent Modeling (FIAM), an ablation of LIAM with full
information, VariBad [14], Classification-Based Agent Modeling [1], and Contrastive
Agent Representation Learning (non-reconstruction baseline based on Oord, Li, and
Vinyals [15]). Among these, only FIAM, an ablation of LIAM with access to full
information instead of limited, and VariBad are autoencoder reconstruction-based
agent modelling methods. One point of interest is that the VariBad algorithm uses
the observation, action, and reward triplet and a variational autoencoder along with a
controlled agent, as in LIAM. This approach is one of the variations studied in this
dissertation (as seen later in Chapter 3), especially considering the use of rewards as a



reconstruction target, similar to the preference estimation target in Baarslag, Hendrikx,
Hindriks, et al. [3]. Furthermore, LIAM also employs a recurrent autoencoder,
considering the relative complexity of their target environments.

This idea has been extended to a multi-agent reinforcement learning (MARL) setting
as discussed in Albrecht, Christianos, and Schäfer [9] (Multi-Agent Reinforcement
Learning Book, Chapter 9.6). In this context, a simple autoencoder architecture is
employed to reconstruct opponent actions using the ego agent’s observations. Unlike in
LIAM, where opponent policies are fixed, this approach deals with dynamic opponent
policies, leading to a more complex and non-stationary target distribution. The policies
are conditioned on the latent variable from the encoder, allowing for an algorithm-
agnostic implementation that can potentially enhance robustness and learning efficiency.
The authors demonstrate this through preliminary experiments using a centralised A2C
algorithm in a relatively simple environment.

However, the experiments presented in the book are limited to action reconstruction
in basic settings, which leaves open questions about the impact of reconstructing
other targets, such as observations (as in LIAM) and rewards (as inspired by Baarslag,
Hendrikx, Hindriks, et al. [3]), in a MARL context. Additionally, it is unclear how these
methods will perform in more challenging tasks. These open questions form the basis of
this thesis, which aims to explore the use of autoencoders to learn latent representations
of opponent behaviours and condition policies on these representations, extending the
approach to more complex and varied scenarios.

2.4 Literature Review Insights

This chapter established a foundation for integrating agent modelling in MARL algo-
rithms, beginning with an introduction to RL and building up to the complexities of
RL in multi-agent systems. The importance of explicit agent modelling is emphasised,
where agents must consider the behaviours of others to develop effective strategies.
As discussed, multi-agent systems give rise to additional challenges, including non-
stationarity, scalability, partial observability, and the necessity for coordination. These
challenges make it difficult for traditional RL methods to achieve optimal policies in
multi-agent environments, underscoring the need for more sophisticated approaches
where explicit agent modelling has the potential to mitigate the mentioned issues.

This chapter has explored the state of research in this area, identifying both the
progress made and the existing gaps, which in turn shape the direction of this dissertation.



The key takeaways from the current literature are:

• Importance of Explicit Agent Modeling: The review highlights the limitations of
implicit modelling approaches, which rely on analysing patterns in observational
data. These methods are often less sample-efficient and may struggle with
complex, dynamic environments. Explicit agent modelling, on the other hand,
provides a more structured and efficient way to predict and adapt to other agents’
actions.

• Diverse Methodological Approaches: Various methods for opponent modelling
have been explored, including classical approaches such as deterministic finite
automata and dynamic programming, as well as more modern techniques like
Bayesian learning, neural networks, and autoencoder-based methods. Each
approach offers distinct advantages but also comes with specific limitations, such
as scalability issues or the need for extensive prior knowledge.

• Gaps in Current Research: The review identifies several gaps in the existing
literature, particularly the need for more robust and scalable opponent modelling
techniques to handle dynamic multi-agent environments’ complexities. There is
also a noted need for methods that can efficiently address partial observability
and non-stationarity, which are common challenges in MARL settings.

• Potential of Autoencoder-Based Methods: Autoencoder-based methods, which
involve reconstructing opponent actions and strategies from compact latent
representations, are identified as a promising approach. These methods offer a
flexible and algorithm-agnostic solution that can be adapted to various MARL
scenarios, potentially improving both the efficiency and effectiveness of learning
in complex environments.

These insights provide a solid conceptual and practical foundation for exploring
the integration of opponent modelling into MARL. This chapter lays the groundwork
for further development and experimentation with advanced modelling techniques in
multi-agent systems by identifying the strengths and weaknesses of existing methods
and recognising the potential of autoencoder-based approaches. This exploration aims
to contribute new understanding and solutions to the challenges inherent in multi-agent
reinforcement learning.



Chapter 3

Methodology & Experiments

This chapter delves into the integration of opponent modelling techniques into MARL
algorithms, beginning with an explanation of the model architecture and the integration
methodology. It also covers the training procedures within an algorithm-agnostic
framework, the design of the selected environments, and the MARL algorithms
considered in this dissertation. The evaluation design is outlined, emphasising key
metrics derived from both reinforcement learning and unsupervised learning perspectives,
specifically in the context of using autoencoders to reconstruct features of the opponents,
such as actions, observations or rewards. The primary focus is on implementing
an autoencoder-based reconstruction method (inspired by Section 9.6 in Albrecht,
Christianos, and Schäfer [9]), utilising neural networks to model opponents effectively.
This approach will be tested across various environments and benchmark MARL
algorithms to evaluate its impact on a variety of metrics.

3.1 Autoencoder Reconstruction Based Modelling

The LIAM Papoudakis, Christianos, and Albrecht [2] and Centralised A2C + AM
Albrecht, Christianos, and Schäfer [9] agent modelling algorithms (Section 2.3.4) have
demonstrated the potential of autoencoders for use in agent modelling. Building on
the foundational work in this area, this study presents an advanced method termed
Autoencoder Reconstruction-Based Modelling. This approach extends previous research
by incorporating a wider array of reconstruction targets, including actions, rewards,
and observations, both individually and in combination. This method aims to capture
more nuanced aspects of opponent strategies and systematically evaluates the impact of
varying latent space dimensions. By addressing the limitations of earlier studies, this



research provides a more comprehensive analysis of how different reconstruction targets
and latent dimensions influence the effectiveness of opponent modelling in multi-agent
reinforcement learning environments. It is crucial to clarify that the term "opponent"
refers to any agent other than the primary agent; thus, for each agent, all other agents are
considered "opponent" agents.

Using different reconstruction targets leads to learning varied representations that
encode different aspects of opponents’ behaviours. This dissertation focuses on several
specific reconstruction targets. First, conditional action frequencies involve directly
reconstructing opponents’ actions or action frequencies, which can effectively capture
their current policies. However, this approach tends to focus on the short-term trajectories
of the opponents and may not fully capture their long-term planning. Additionally, it
may be susceptible to minor variations in policy. This issue is further exacerbated by
the fact that all agents are continuously learning, meaning the opponents’ policies are
drawn from a non-stationary distribution. A key consideration is the choice between
modelling actions, which capture discrete decisions at specific moments, and modelling
action frequencies, which provide a broader view of an agent’s behaviour over time by
reflecting the likelihood of different actions. Using action frequencies can introduce a
degree of stochasticity, which, while more complex, may allow for the reconstruction of
both the confidence in different actions and the entropy within the opponent’s policies
rather than just capturing the final selected actions.

Second, reward reconstruction focuses on the rewards obtained by opponent agents,
which helps in inferring strategies from the perspective of goal-directed behaviour.
This approach is similar to preference estimation as discussed in Baarslag, Hendrikx,
Hindriks, et al. [3]. However, a potential drawback is the complexity involved in
tracking and effectively interpreting the policy from the rewards, which may result in
a less straightforward and slower learning curve. This approach can be considered as
capturing more long-term strategic elements, given that it leverages reward signals,
which inherently influence the trajectory of policy updates. However, it is crucial to
recognize that this method primarily reflects rewards at individual timesteps rather than
providing direct insight into the overarching objectives that the agents are optimizing
for.

Finally, Observation reconstruction involves capturing the observations of the
opponents. This method is useful for encapsulating spatial navigation patterns and
strategic movements of opponent agents, which is particularly beneficial in scenarios
where spatial reasoning is crucial, such as with autonomous vehicles. However, there



Figure 3.1: The encoder network 𝑓𝑒 generates a representation 𝑚𝑡
𝑖

depicting the policies of
other agents. Throughout the training process, a decoder network 𝑓𝑑 is trained to reconstruct
various targets, denoted as 𝜌, pertaining to the actions, rewards, or state trajectories. During
execution, the representation is used to condition the agent’s policy in addition to the history, ℎ𝑡

𝑖
.

Additionally, varying the dimensions of the representation serves as a focal point for evaluation
studies.

is an added layer of complexity in inferring the agent’s policies based solely on the
observed states of the opponents. Unlike direct action reconstruction, where the actions
themselves are the primary focus, trajectory-based methods require the model to deduce
how these actions translate into movement patterns within the environment.

In terms of classification, autoencoder-based reconstruction can be seen as a spectrum
from classification-based modelling to policy-based reconstruction. In simpler terms, as
the latent space dimensions increase, the modelling shifts from classification-based (with
a single latent variable) to policy-based reconstruction, where the dimension equals the
number of agents multiplied by the action dimensions, i.e., 𝑛_𝑎𝑔𝑒𝑛𝑡𝑠 ∗ 𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑚.

As in Figure 3.1, the autoencoder reconstructs the chosen reconstruction target 𝜌𝑡
𝑖

depicting characteristics of opponent agents, using the agent’s individual observation
as inputs, and passing it through a bottleneck, i.e. the latent variable controlled by the
representation dimensions. The policy and/or critic of the MARL algorithm is then
conditioned on the encoded representation, thereby passing in a latent representation of
the reconstructed opponents’ reconstruction targets, i.e.

𝑎𝑡𝑖 ∼ 𝜋𝑖 (·|𝑜𝑡𝑖 , 𝑧𝑡𝑖 , 𝜃𝑖),

where 𝑎𝑡
𝑖
is the action selected by agent 𝑖 at time 𝑡, 𝑜𝑡

𝑖
is the observation of agent 𝑖 at time

𝑡, 𝑧𝑡
𝑖
is the latent representation produced by the autoencoder that encodes information

about the opponent’s high-level strategy (inferred based on the reconstruction target),
and 𝜃𝑖 represents the policy parameters of agent 𝑖. The policy 𝜋𝑖 defines a probability
distribution over possible actions, conditioned on the current observation 𝑜𝑡

𝑖
, the latent



representation 𝑧𝑡
𝑖
, and the policy parameters 𝜃𝑖.

Since the encoded representation can be used to condition both the policy or the critic,
this type of agent modelling can be easily adopted by most MARL algorithms without
much friction with the preexisting algorithms. This can be evidenced by the adaptation
of the existing EPyMARL library [16] to extend Autoencoder Reconstruction Based
Modelling to the algorithms of Multi-Agent Proximal Policy Optimization, Independent
Proximal Policy Optimization, Independent Q Learning (See Algorithm 2).

Extending this, the reconstruction targets are not limited to the individual ones
mentioned above; multiple targets can be combined to capture a broader range of
unique aspects from each target. For example, combining observation and action
trajectories could encode both the opponent agents’ spatial reasoning and action
selection strategies. Combining the advantages of both approaches could provide a
more holistic understanding of the opponent’s behaviour. However, it is important to
note that a bottleneck in the autoencoder, which is smaller than the input, leads to lossy
compression. Consequently, the encoder’s capacity to capture detailed information is
constrained, depending on the dimensionality of the encoding, which may result in
diminished performance if all reconstruction targets are used simultaneously.

Further, the autoencoder is trained in conjunction with the agent’s learning process;
in other words, the autoencoder model is updated with the agent’s observations and
opponent targets each time the MARL algorithm undergoes an update. This is done to
ensure up-to-date modelling since, in this proposed method, the opponents’ policies are
also updated with each agent policy update. Hence, from the point of the autoencoder,
the dataset is non-stationary, requiring continuous training. Also, due to this reason,
combining multiple experiences across multiple episodes to form larger batches to train
the autoencoder on might lead to lower performance since the dataset would contain
reconstruction targets and ego observations from different distributions due to changes
in the policies of all agents.

The losses for the autoencoder have been calculated based on the reconstruction
target. For observation and reward as reconstruction targets, being continuous variables,
mean square error is used to calculate the loss:

𝐿𝑜𝑠𝑠𝑜𝑏𝑠 =
1
𝑁

𝑁∑︁
𝑖=1
∥𝑜𝑖 − 𝑜𝑖∥2 ,

where 𝑜𝑖 is the true observation vector for the 𝑖th data point, 𝑜𝑖 is the reconstructed
observation vector, obtained from the autoencoder network, for the 𝑖th data point, and 𝑁



is the total number of observations.

𝐿𝑜𝑠𝑠𝑟𝑒𝑤 =
1
𝑁

𝑁∑︁
𝑖=1
∥𝑟𝑖 − 𝑟𝑖∥2 ,

where 𝑟𝑖 is the true reward value for the 𝑖th data point, 𝑟𝑖 is the reconstructed reward
value for the 𝑖th data point, and 𝑁 is the total number of data points.

For action frequencies, which are continuous variables representing probabilities
between 0 and 1, there are two primary approaches when dealing with discrete actions.
The first approach involves recording the opponent’s actions and applying cross-entropy
loss, which provides a straightforward method of minimizing the difference between
predicted and observed actions. The second approach involves recording the opponent’s
action frequencies and applying Kullback-Leibler (KL) divergence loss to minimize
the divergence between the predicted and actual action distributions. KL divergence is
particularly beneficial as it captures the opponent’s action preferences and the entropy
of their action frequencies, offering a more nuanced understanding of the opponent’s
policy. In contrast, cross-entropy loss does not carry an implicit assumption of access
to the complete distribution of the opponent agents’ policies, which is arguably more
difficult to obtain. For cross-entropy loss:

𝐿𝑜𝑠𝑠𝑐𝑒 = −
1
𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑦𝑖, 𝑗 log( �̂�𝑖, 𝑗 ),

where 𝑦𝑖, 𝑗 is the true label for action 𝑗 taken by opponent 𝑖, �̂�𝑖, 𝑗 is the predicted
probability of action, obtained from the Autoencoder network, 𝑗 for opponent 𝑖, 𝑀 is
the number of possible actions, and 𝑁 is the total number of observations.

For Kullback-Leibler (KL) divergence loss:

𝐿𝑜𝑠𝑠𝑘𝑙 =
1
𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑦𝑖, 𝑗 log

(
𝑦𝑖, 𝑗

�̂�𝑖, 𝑗

)
,

where 𝑦𝑖, 𝑗 represents the true action frequency distribution for opponent 𝑖, and �̂�𝑖, 𝑗

represents the predicted action frequency distribution.
These losses, when combined with the observation and reward reconstruction losses,

can effectively guide the model to learn comprehensive representations of the opponent’s
behaviour:



𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝛼 · 𝐿𝑜𝑠𝑠𝑜𝑏𝑠 + 𝛽 · 𝐿𝑜𝑠𝑠𝑟𝑒𝑤 +𝜆 · 𝐿𝑜𝑠𝑠𝑐𝑒/𝑘𝑙 ,

where 𝛼, 𝛽, and 𝜆 are hyperparameters that control the contribution of each loss
component to the total loss. Depending on the specific application and the nature of
the opponent’s strategy, one may choose between cross-entropy loss or KL divergence
to fine-tune the model’s learning process. However, for the purpose of this study, the
scope has been limited to 𝛼 = 1, 𝛽 = 1 and 𝜆 = 1. This algorithm is detailed further in
Algorithm 1.

The key idea is to adjust the model’s complexity by varying the dimensionality of
the latent space, thereby enabling a gradient of abstraction levels in opponent modelling
and exploring various permutations of reconstruction targets to extract different aspects
of the opponents’ strategies.

3.1.1 Autoencoder Model Training Procedure

The autoencoder will be trained as part of the integrated MARL framework (Algorithm 2),
with reconstruction targets derived from the opponent agents’ observed actions, action
frequencies, and rewards. The training process involves several key steps. First, dataset
generation is conducted by running MARL algorithms in simulated environments, where
data comprising observations, actions, action frequencies, and rewards of agents are
collected. This data is structured and managed using the replay buffer, which is reset
per episode to retain opponent samples only from the most recent policy updates.

Next, the loss functions play a critical role in the training process. The primary
objective function incorporates mean squared error (MSE) for continuous variables,
such as observations and rewards, and Kullback-Leibler (KL) divergence loss for action
frequencies, which are treated as probabilistic outputs. Alternatively, cross-entropy loss
may also be employed to calculate probabilistic action frequencies. In addition to the
reconstruction loss, KL divergence may serve as a regularisation term to maintain a
well-distributed latent space, ensuring that the encoded latent representations effectively
capture the diversity of opponent behaviours.

Optimisation is achieved using the Adam optimiser, with learning rates specifically
tuned for the opponent modelling task. The autoencoder is updated in tandem with the
policy updates within the MARL framework, ensuring that the opponent models adapt
as training progresses. This synchronisation helps maintain a stationary distribution by
using data from before the policy updates.



Algorithm 1 Autoencoder Reconstruction Based Agent Modelling Learner (Per Agent)
1: Input: Episode Replay Buffer (batch), epochs, N_Agents, Encoder Parameters

(Ψ𝑒), Decoder Parameters (Ψ𝑑)
2: Output: Updated Encoder Parameters (Ψ𝑒), Updated Decoder Parameters (Ψ𝑑)
3: for each epoch in [1,epochs] do
4: Sample mini-batch from replay buffer (batch)
5: for each agent 𝑖 in [1,N_Agents] do
6: Obtain a Batch of ego-agent observations (𝑜𝑖) and opponent agents’ obser-

vations, actions, and rewards.
7: Encode ego-agent observations (𝑜𝑖) using the encoder network ( 𝑓 𝑒) to obtain

latent representation:
zi = 𝑓 𝑒 (oi,Ψ

𝑒
𝑖 )

8: Decode latent representation (𝑧𝑖) to reconstruct observations (ô𝑖), action
frequencies (p̂𝑖), and rewards (r̂𝑖), using decoder network ( 𝑓 𝑑):

ô𝑖, p̂𝑖, r̂𝑖 = 𝑓 𝑑 (zi,Ψ
𝑑
𝑖 )

9: end for
10: Calculate losses:

• Observation Reconstruction Loss: If observation reconstruction target is
used: Mean Square Error (Refer Equation 3.1)

• Action Frequency Reconstruction Loss (KL Divergence): If action recon-
struction target is used: KL Divergence Loss (Refer Equation 3.1)

• Reward Reconstruction Loss: If reward reconstruction target is used: Mean
Square Error (Refer Equation 3.1)

11: Compute the total loss:

L = 𝛼 ·Lossobs + 𝛽 ·Lossrew +𝜆 ·Lossact, , for this study 𝛼 = 1, 𝛽 = 1,𝜆 = 1.

12: Update encoder parameters Ψ𝑒:

Ψ𝑒← Ψ𝑒 −𝜂 · ∇Ψ𝑒L

13: Update decoder parameters Ψ𝑑:

Ψ𝑑← Ψ𝑑 −𝜂 · ∇Ψ𝑑L

14: end for
15: Return: Updated Encoder Parameters (Ψ𝑒), Updated Decoder Parameters (Ψ𝑑)

3.2 Experimental Framework

3.2.1 Selected Study Environments

The focus here lies on selecting an environment and identifying the key factors and
design considerations that ensure alignment with the goals of investigating opponent



Algorithm 2 Generic MARL with Integrated Opponent Modelling
1: Input: Initial policy parameters for each agent (𝜃𝑖), autoencoder model parameters

(𝜙𝑖), MARL environment, total episodes (episodes), learning rate (𝛼), and opponent
modeling frequency (𝜏).

2: Output: Trained policies for all agents.
3: Initialize policy parameters 𝜃𝑖 for each agent 𝑖.
4: Initialize autoencoder model parameters 𝜙.
5: for episode = 1 to episodes do
6: Reset environment and observe initial state 𝑠0.
7: for t = 0 to T do
8: for each agent 𝑖 in 1, . . . , 𝑁 do
9: Select action 𝑎𝑡

𝑖
∼ 𝜋𝜃𝑖 (𝑎𝑡𝑖 |ℎ𝑡 ,z𝑡𝑖), where z𝑡

𝑖
is the encoded latent represen-

tation from the autoencoder.
10: Execute action 𝑎𝑡

𝑖
and observe next observation 𝑜𝑡+1 and reward 𝑟 𝑡

𝑖
.

11: end for
12: Store transition (𝑜𝑡 ,a𝑡 , 𝑟 𝑡 , 𝑜𝑡+1) in replay buffer.
13: Call Autoencoder Reconstruction Based Agent Modelling Learner

(Algorithm 1) for each agent 𝑖
14: Sample mini-batch from replay buffer for a policy update.
15: for each agent 𝑖 in 1, . . . , 𝑁 do
16: Calculate policy loss (e.g., Proximal Policy Optimization (PPO), Q-

learning, etc.).
17: Perform backpropagation on policy and update 𝜃𝑖 using optimizer.
18: end for
19: end for
20: end for
21: Return: Trained policies 𝜃𝑖 for all agents.

behaviour, learning dynamics, and evaluating the effectiveness of the proposed modelling
methodologies. The key focus is to utilise an environment that offers sufficient flexibility
to test various scenarios while being complex enough to discern subtle differences in
algorithmic performance. Additionally, the environment should be capable of simulating
real-world scenarios where agents contend with uncertain and adversarial opponents,
allowing for a more thorough assessment of the effectiveness in addressing challenges
such as opponent deception, collaboration, and adaptation.

One important factor is the level of observability, which pertains to whether the agent
has partial or complete observability within the environment. Another key consideration
is whether the environment is competitive, cooperative, or somewhere in between,
meaning whether the agents have opposing goals, supportive goals, or non-opposing
goals that are not entirely aligned. Additionally, agent heterogeneity is an important
aspect, referring to the presence of agents with different observation spaces, action



spaces, or interaction dynamics, such as locomotion dynamics. This heterogeneity can
exist even among agents working toward the same goal.

Based on these design considerations, the following environments were chosen as
the focus of this study:

• Multi-Particle Environments (MPE) [17] [18]: A collection of particle-based
environments featuring a variety of tasks that enable variable observability, as well
as a mix of competitive and cooperative scenarios. These environments offer a
wide variety of tasks, coupled with being sufficiently complex yet computationally
lightweight, making them suitable for use within a reasonable computational
range.

• Level Based Foraging (LBF) [19] [16]: This is a mixed cooperative-competitive
environment where agents navigate a grid, each with a level, to collect food. The
emphasis, however, is on cooperation, as agents must combine their levels to meet
or exceed the food’s level for successful collection. The environment challenges
agents to balance individual and group strategies, making it complex due to sparse
rewards and the need for strategic decision-making.

• StarCraft Multi-Agent Challenge lite (SMAClite) [20]: This environment is a more
computationally efficient version of the original SMAC [21], providing a relatively
more complex environment as compared to others on this list, with dynamic
interactions among diverse agents and additional environmental landmarks.

Hence, selecting the right environment is essential for effective agent modelling, as
it must capture diverse interactions and support the investigation of opponent behaviour,
learning dynamics, and the evaluation of modelling methodologies.

Specifically, the environments utilized for the experiments in this study are:

• SMAClite 2s3z: A simplified version of SMAC with two Stalkers and three Zealots.
It was chosen for its dynamic interactions, being a cooperative environment, and
serving as a moderate complexity test for agent modelling in real-time adversarial
settings.

• LBF 10x10 3p 3f (Cooperative with Common Reward): A cooperative foraging
scenario where three agents must coordinate to collect food. This environment
tests the effectiveness of agent modelling in enhancing collaborative efforts in a
fully cooperative setting.



• LBF 10x10 3p 3f (Competitive with Individual Reward): A mixed competitive
cooperative variant where agents compete to collect food individually. It assesses
the impact of agent modelling on competitive strategies and decision-making.

• LBF 2s 10x10 3p 3f (Cooperative with Common Reward; Partial Observability):
Introduces partial observability in a cooperative foraging scenario, increasing
complexity by requiring agents to infer the actions of others. It tests the robustness
of agent modelling under uncertainty.

• MPE Simple Spread (Cooperative with Individual Rewards): A simple scenario
where agents must learn to cover the landmarks on a plane while avoiding
collisions. It combines cooperation and spatial reasoning, making it ideal for
testing decentralized coordination in agent modelling.

• SMAClite MMM2: A challenging mixed-unit scenario where different unit
types (Marine, Marauder, Medivac) must coordinate attacks and defences. This
environment assesses how well agent modelling enhances performance in complex,
multi-faceted tactical situations.

3.2.2 MARL Algorithm of Focus

In this study, the focus is exclusively on the MAPPO (Multi-Agent Proximal Policy
Optimization) [22] algorithm due to its superior performance in solving complex
environments more efficiently. MAPPO is a widely-used and well-regarded algorithm that
extends Proximal Policy Optimization (PPO) [23] to multi-agent settings, coordinating
multiple agents through centralized training while allowing for decentralized execution.
This makes it particularly effective in both cooperative and competitive environments,
where it can navigate and optimize strategies faster than other algorithms.

By using MAPPO, the study ensures that environments can be solved more rapidly,
allowing for a direct and meaningful comparison of converged rewards across different
experimental setups. This approach not only streamlines the investigation but also
leverages MAPPO’s robust performance to highlight the potential improvements brought
by agent modelling.



3.3 Experimental Procedure

The experiments will be designed to systematically assess the impact of opponent
modelling on the performance of MARL algorithms across different environmental, al-
gorithmic, and model characteristics. This approach will allow for a more comprehensive
understanding of the effects of agent modelling:

1. Environmental Comparative Performance: Run the MAPPO algorithm with
and without opponent modelling to establish baseline comparisons across different
environments. The focus here is on fixing the latent variable dimensions and
reconstruction targets while observing variations in the comparative performance
of MARL algorithms with and without agent modelling across different envi-
ronments. This will help identify which environmental characteristics are most
impacted by agent modelling.

2. Performance on Different Combinations of Reconstruction Targets: Run
the MAPPO algorithm with agent modelling, varying the different possible
permutations of the reconstruction targets, and contrast the results with those
obtained without agent modelling. This will provide a better understanding
of which reconstruction targets, or combinations thereof, are more effective in
extracting opponent strategies across different scenarios.

3. Ablations on the Latent Variable Dimension: Conduct experiments that vary
the latent variable dimensions to determine the optimal bottleneck size needed to
extract information about opponent strategies while minimizing excessive data
loss due to the lossy compression inherent in the autoencoder network.

4. Performance of Different MARL Algorithms with Agent Modeling: Vary
the MARL algorithms to determine which algorithms are more compatible with
agent modelling and analyze the learning curves for each. While the focus of the
other experiments is primarily on MAPPO, this set of experiments will explore a
broader range of algorithms.

5. Ablations on the Autoencoder Type: Experiment with different variations of
autoencoders, such as variational autoencoders, to determine which are better
suited for extracting and compressing the maximum amount of detail from
opponent strategies in a multi-agent setting.



6. Computational Overhead: Measure the computational overhead to identify the
appropriate tradeoff between performance and computational cost.

Together, these experiments aim to provide an in-depth understanding of agent
modelling and its varied effects in different scenarios. This will help determine in which
scenarios agent modelling can be effectively utilised, considering the computational
overhead, and which scenarios, along with specific hyperparameters such as latent
variable dimensions or reconstruction targets, are best suited for maximising the
effectiveness of agent modelling.

3.4 Evaluation Metrics

The evaluation framework focuses on both the accuracy of the reconstructions and the
overall impact on multi-agent learning performance, considering a range of key metrics.

To evaluate the performance of the autoencoder-based approach, the following
metrics will be tracked:

• Accuracy: The accuracy of reconstructed actions compared to the true actions
taken by the opponent. This metric is applied only when action reconstruction is
used due to the nature of action probabilities, which can be inferred as classification
problems.

• Entropy: The entropy of the predicted action distributions is used as a measure of
the uncertainty and diversity in the policy reconstructions. Comparing this with
the entropy of the ground truth opponent actions provides a better understanding
of the action reconstruction performance.

• Loss: Monitoring the reconstruction losses for observations (Mean Square Error),
actions (Cross Entropy Loss or KL Divergence Loss), and rewards (Mean Square
Error) separately to understand which aspects of the opponent’s behaviour are
best captured by the model.

The evaluation will also consider broader performance indicators to understand the
impact of the autoencoder-based approach on MARL algorithms:

• Converged Returns: Assessing the stability and effectiveness of learning after
convergence.



• Win Rate: Measuring the success rate in achieving goals or defeating opponents.
The specific focus here is on the SMAClite environments, as in this context, win
rate is a meaningful metric when comparing against a fixed opponent team.

• Computational Efficiency: Measuring the computational overhead introduced
by the opponent model in terms of training time.

Overall, this evaluation design provides a comprehensive assessment of the autoencoder-
based approach, balancing the accuracy of opponent behaviour modelling with the
broader implications for multi-agent learning performance and computational efficiency.
These metrics will guide the refinement of the approach and ensure its effectiveness in
diverse and dynamic environments.

3.5 Conclusion

In conclusion, this chapter has established a comprehensive framework for integrating
and evaluating opponent modelling within MARL algorithms. By focusing on a carefully
selected set of environments and algorithms, the study aims to assess the effectiveness
of autoencoder-based modelling across different scenarios. The evaluation metrics,
encompassing both accuracy in reconstruction and overall performance impact, provide
a robust foundation for analyzing the benefits and trade-offs of this approach. This
framework not only facilitates a deeper understanding of opponent behaviour modelling
but also sets the stage for future exploration of how such models can enhance multi-agent
learning dynamics in complex, real-world settings.



Chapter 4

Results & Insights

This chapter presents the results of the experiments designed to assess the impact of
opponent modelling on the performance of MARL algorithms. The analysis is structured
according to the experimental procedure outlined in Section 3.3.

4.1 Environmental Comparative Performance

In this case, the focus of the experimentation is to find the environment characteristics
where agent modelling would have the maximal impact. To compare this performance and
to isolate the effect of the different target environments on the algorithm’s performance,
the latent variable dimensions and reconstruction targets are fixed. Here, only action
frequencies have been used as the reconstruction target. Further, only the MAPPO
algorithm is utilized in this scenario. Further in-depth details of the hyperparameters
and training configurations per experiment have been included in Appendix D.

To thoroughly test agent modelling across the environmental characteristics men-
tioned in Section 3.2.1, a combination of environments with varying levels of complexity,
degrees of observability, cooperation, and heterogeneity was chosen. The following
environments were utilized to ensure the broadest coverage of scenarios SMAClite 2s3z,
LBF 10x10 3p 3f, LBF 10x10 3p 3f, LBF 2s 10x10 3p 3f, MPE Simple Spread.

Figure 4.1 shows that when using cross-entropy loss, the inclusion of opponent
modelling in MAPPO generally results in either equivalent or lower episodic returns
across the tested environments. In the 2s3z and the LBF environment, the returns when
using agent modelling are up to par with the baseline episodic returns. However, in
Simple Spread and LBF with partial observability, the agent modelling results in lower
episodic returns. In simpler environments, agent modelling gives a similar return to the



Figure 4.1: Episodic returns comparison of MAPPO with and without opponent modelling
across various environments. Using action frequencies as reconstruction targets, and
using cross-entropy loss for the autoencoder. The selected environments include MPE
Simple Spread, LBF in cooperative and competitive settings (both fully observable
and partially observable), and SMAClite 2s3z. (Note: Here 2s in the context of LBF
environment represents partial observability; refer Christianos, Schäfer, and Albrecht
[19])

baseline, the performance plateaus and achieves a similar episodic return; hence, for
further experiments, the more complex environments are the focus. Further, it can also
be hypothesised that in complex environments, more timesteps are required to close the
gap and for agent modelling to improve upon the baseline performance.

Building on this, Figure 4.2, shows that on switching to KL Divergence loss for
the action frequency significantly improves performance, and narrows the gap. In
the case of LBF with partial observability, the gap is completely closed, and agent
modelling results in the same performance as the baseline performance. KL Divergence
is generally well-suited for capturing the nuances of probabilistic distributions [24],
such as action frequencies. By focusing on minimizing the divergence between the
predicted and actual action distributions, the model may be better able to capture the
strategic behaviour of opponents, leading to more effective opponent modelling. Hence,
it can be reasoned that when capturing the action frequencies is an option, the use of KL
divergence would result in better performance.

Further extending the experiment to a more complex environment—the SMAClite
MMM2 environment, as shown in Figure 4.3—using action frequency as the recon-
struction target results in marginal improvements in episodic returns and leads to a



Figure 4.2: Episodic returns comparison of MAPPO with and without opponent modelling
across various environments. Using action frequencies as reconstruction targets, and
using KL Divergence loss for the autoencoder. (Note: Here 2s in the context of LBF
environment represents partial observability; refer Christianos, Schäfer, and Albrecht
[19])

more robust algorithm, as evidenced by the lower deviations compared to the baseline.
In MMM2, the coordination of diverse unit types (Marine, Marauder, Medivac) with
different abilities and roles introduces a higher level of tactical decision-making. Agent
modelling could be more beneficial in this context because it allows the algorithm to
better anticipate and adapt to the varied strategies employed by the opponent, particularly
in managing the synergies between different units. Here, in the case of simpler, more
predictable environments, opponent modelling does not provide a significant advantage,
leading to similar performance with or without agent modelling. Therefore, the added
complexity and the need for nuanced decision-making in MMM2 likely make agent
modelling more impactful in this environment, resulting in the observed performance
improvement.

Figure 4.3: Episodic returns comparison of
MAPPO with and without opponent mod-
elling on the SMAClite MMM2 map, with KL
Divergence loss and action frequency as re-
construction target.

These results demonstrate that the
impact of opponent modelling varies
significantly across different environ-
ments, with more complex and strate-
gic settings like SMAClite MMM2
showing noticeable performance im-
provements when agent modelling is
utilized. Conversely, in simpler or
more predictable environments, the
benefits of opponent modelling are
less apparent, leading to a comparable



Figure 4.4: Episodic returns comparison of MAPPO with different permutations of
reconstruction targets on the SMAClite MMM2 map, LBF and MPE Simple Spread
environments, with KL Divergence loss for action frequency reconstruction.

performance with the baseline. These
findings suggest that the complexity
of the environment plays a crucial role
in determining the effectiveness of opponent modelling, highlighting its potential in
scenarios that demand sophisticated coordination and strategy.

4.2 Performance on Different Combinations of Recon-

struction Targets

This experiment evaluates the effectiveness of different combinations of reconstruction
targets on the performance of MAPPO with agent modelling. The results are also
compared to the baseline performance without agent modelling (Figure 4.4).

Figure 4.4 shows that in the MPE Simple Spread environment, unlike the perfor-
mances observed in the previous section using only action frequency as a reconstruction
target, certain combinations here surpass the non-agent modelling baseline performance,
though the differences are not as pronounced. Notably, the combination of action



and reward reconstruction performs better than the baseline without agent modelling.
This improvement can be attributed to the action reconstruction capturing short-term
strategies and the reward reconstruction capturing long-term strategies, as discussed in
Section 3.1. Additionally, it is evident that solely using reward reconstruction results in
the lowest performance, likely because the policy must infer the opponents’ short-term
policies from latent representations of the reward patterns. The combination of short-
term action frequencies and long-term reward reconstruction yields the most significant
performance improvement. Reward reconstruction appears to act as a performance
enhancer when combined with both action and observation reconstruction. This pattern
is consistent across different environments and environmental characteristics, although
it is less pronounced in simpler environments.

A consistent pattern observed across the experiments is the lower performance of
observation reconstruction compared to action frequency reconstruction. Observations
often contain a significant amount of information that may not be directly relevant to
predicting the opponent’s strategy or future actions. This extraneous information can
introduce noise, diluting the effectiveness of the model’s learning process. In contrast,
action reconstruction focuses directly on the opponent’s decision-making process, which
is more closely aligned with the strategic behaviours that the model seeks to capture.
This, combined with the possibility of increased variability, as shown in Figure 4.4, can
explain the lower performance of observation reconstruction targets.

However, as seen in Figure 4.5, utilizing cross-entropy loss in combination with
action reconstruction and observation reconstruction appears to improve performance
compared to other reconstruction target combinations, although it still falls short of
baseline levels. This improvement can be attributed to the fact that incorporating
observation reconstruction can lead to the development of richer and more informative
latent representations. These enhanced representations may capture more subtle
dependencies between the environment and the opponent’s actions, which, in the case
of cross-entropy loss, are not present when learning is focused solely on optimal actions
rather than on opponents’ preferences. Nevertheless, the high variability associated with
observation reconstruction remains a challenge even in this combined approach.

Overall, combining action and reward reconstruction generally results in the most
significant performance improvements, effectively capturing both short-term and long-
term strategies. However, observation reconstruction typically underperforms; this
could potentially be due to its higher variability and the potential inclusion of irrelevant
information. Despite this, it can slightly enhance performance when paired with action



Figure 4.5: Episodic returns comparison of MAPPO with different permutations of
reconstruction targets on the MPE Simple Spread environment, with Cross Entropy loss
for action frequency reconstruction.

Figure 4.6: Episodic returns comparison of MAPPO with different dimensions of the
encoded latent variable, with action frequency reconstruction targets on the MPE Simple
Spread and SMAClite MMM2 environments, with KL Divergence loss for the action
frequency reconstruction. (Here, environments with a common reward do not include
reward reconstruction, as it is not feasible in such cases due to a single reward being
shared among all agents.)

reconstruction using cross-entropy loss.

4.3 Ablations on the Latent Variable Dimension

In this set of experiments, the latent variable dimensions were varied to determine
the optimal bottleneck size needed to extract opponent strategy information without
excessive data loss due to the lossy compression inherent to autoencoder networks. Here,
again the reconstruction target has been locked to action frequency with KL divergence
loss. In this case, as seen in Figure 4.6, it can be seen that the performance differences
across different latent variable dimensions vary wildly with the environment choice,
particularly the action dimensions. In the case of MPE Simple Spread, the returns don’t
seem to vary as much; however, in the case of a very high latent variable dimension, 64 in



this case, the performance seems to deteriorate by a lot. This can be said for the SMAClite
MMM2 environment as well, wherein the latent_dim = 64 performs much worse. In
this case the consistent better performance is when the latent variable dimension is 32.
Although not statistically significant, even in the Simple Spread environment, the better
performance is when the latent dimension is around 10. It can be inferred that the latent
variable dimensions are better suited to be values less than but within a certain threshold
of the value of the combined reconstruction dimensions. The optimal performance
is achieved with moderate latent dimensions, approximately smaller than the size of
the combined reconstruction dimensions, suggesting that excessive dimensionality can
hinder rather than enhance performance. Additionally, it is evident that this aspect—the
latent dimension—is heavily influenced by the environmental characteristics and the
selection of reconstruction targets.

4.4 Analysis of Autoencoder Learning

When comparing the learning metrics for the autoencoder (Appendix B), a consistent
pattern emerged across different configurations. The losses for observation and rewards
showed steady learning progress, plateauing relatively quickly. In contrast, the loss for
action frequencies tended to increase over time, which was also reflected in a similar
trend in accuracy. This behaviour can be attributed to the non-stationary nature of action
frequencies, as opponent policies continuously evolve during training, as discussed in
Chapter 3. Despite the rising loss in action reconstruction, the episodic returns still
improved, especially after a plateauing of the loss, indicating that even though the
model struggles to perfectly capture the shifting action distributions, it still effectively
leverages the learned representations to enhance overall performance. This suggests
that the autoencoder’s ability to model opponent behaviour remains beneficial, even
when dealing with dynamic and evolving policies, underscoring the robustness of action
reconstruction in improving episodic returns despite inherent challenges.

4.5 Computational Overhead

Integrating opponent modelling into MARL algorithms does introduce some compu-
tational overhead, but it is minimal compared to the benefits (see Appendix C). The
baseline, without agent modelling, is only marginally faster, running 1.21 to 1.27 times
quicker than various modelling approaches. Increases in task clock time and CPU



usage are modest, even for the more complex combined reconstruction that includes
observations, action frequencies, and rewards of the opponents, indicating that the
additional computational demands are manageable (Table 4.1). While page faults vary
slightly with complexity, the overall overhead remains minor. This demonstrates that
there is no significant disadvantage to utilizing agent modelling, particularly due to the
simplicity of the autoencoder network used here. Therefore, the slight improvements
are not outweighed by the need for significant computational overhead.

However, it is important to note that since the agent model must predict the
characteristics of all opponent agents, the computational complexity is heavily influenced
by the number of agents in the environment. While most other environmental factors
may result in a similar computational overhead as discussed in this section, the number
of agents could lead to additional computational demands, depending on the specific
characteristics of the environment.

Configuration Hyperfine Mean Time Std Dev Hyperfine Median Time Hyperfine Min Time
No Agent Modelling 72.262451 1.656283 72.183126 70.024540
Reward Reconstruction 87.755260 0.910013 87.508237 86.692285
Action Reconstruction 90.456206 0.778696 90.468437 89.656883
Observation Reconstruction 89.454507 0.777903 89.727934 88.649412
Combined Reconstruction 92.047602 0.740381 91.583217 91.470249

Table 4.1: Hyperfine Timing Results across different configurations.

4.6 Key Insights

This chapter has provided a comprehensive evaluation of the autoencoder-based opponent
modelling approach, revealing several key insights into its effectiveness across different
environments and configurations.

Environment Complexity Matters: The impact of opponent modelling is most
pronounced in more complex environments, such as SMAClite MMM2, where nuanced
decision-making and strategic coordination are required. In these scenarios, opponent
modelling significantly enhances performance by enabling better anticipation and
adaptation to the opponent’s strategies. However, in simpler environments, the benefits
are less evident, with performance often plateauing at levels similar to those achieved
without opponent modelling.

Reconstruction Target Selection: The experiments demonstrated that combining
action and reward reconstructions generally leads to the most significant performance
improvements. Action reconstruction captures short-term behaviours, while reward



reconstruction captures long-term behaviours, creating a more holistic understanding
of opponent strategies. Observation reconstruction, while sometimes beneficial when
paired with action reconstruction, tends to underperform due to its potential to introduce
noise and variability.

Latent Dimension Calibration: The results underscore the importance of selecting
an appropriate latent dimension size. Moderate latent dimensions (e.g., 10 in simpler
environments and 32 in more complex ones) were found to be optimal, effectively
balancing the need for rich representation without overwhelming the model with
unnecessary complexity. Excessively large latent dimensions can lead to a deterioration
in performance, particularly in simpler environments like MPE Simple Spread.

Loss Function Impact: The choice of loss function for reconstructing action
frequencies plays a crucial role. KL Divergence was found to be more effective than
cross-entropy in capturing the nuances of probabilistic distributions and aligning the
model more closely with opponent strategies.

These insights provide a focused roadmap for optimizing agent modelling in MARL
algorithms. They highlight the importance of tailoring the modelling approach to
the specific environment and task at hand, ensuring that reconstruction targets, latent
dimensions, and loss functions are carefully selected to maximize performance while
minimizing computational overhead.



Chapter 5

Conclusion

This dissertation set out to investigate the integration of agent modelling techniques
within Multi-Agent Reinforcement Learning (MARL) algorithms, with a particular focus
on the effectiveness of autoencoder-based modelling approaches. Through a detailed
exploration of various modelling techniques, experimental setups across different
environments, and an extensive evaluation of key metrics, this study provides a robust
understanding of how autoencoder-reconstruction-based agent modelling can be utilized
to enhance MARL performance.

5.1 Summary of Findings

The research conducted in this dissertation can be summarised across several key areas:
Effectiveness of Autoencoder-Based Modelling: The results indicate that autoencoder-

based agent modelling resulted in improvements in the episodic returns of the MAPPO
algorithm, particularly in complex and strategic environments such as SMAClite MMM2.
However, it is important to note that in simpler environments, agent modelling does not
offer any additional performance improvements over the baseline MARL performance
without agent modelling. The ability of autoencoders to encode and reconstruct various
aspects of opponent behaviour, such as action frequencies and reward signals, allows for
a more nuanced and effective opponent modelling process. This finding aligns with the
hypothesis that capturing both short-term and long-term strategies is essential for robust
agent modelling.

Impact of Environment Complexity: The experiments revealed that the benefits
of agent modelling are most pronounced in environments with higher complexity and
strategic depth. In scenarios like SMAClite MMM2, where agents need to coordinate



diverse unit types and manage intricate tactical decisions, the use of opponent modelling
resulted in improvements in episodic returns. Conversely, in simpler environments
such as MPE Simple Spread, the impact of agent modelling was less apparent, often
leading to performance levels similar to those of non-agent modelling baselines. This
suggests that the effectiveness of agent modelling is heavily context-dependent, with
more challenging environments providing greater opportunities for its application.

Optimization of Reconstruction Targets and Latent Dimensions: A key insight
from this study is the importance of selecting appropriate reconstruction targets and
latent dimensions. The combination of action and reward reconstruction was consistently
found to yield the best performance across different environments. This approach allows
the model to capture both immediate and long-term behaviours of opponents, thereby
facilitating more informed decision-making by the agents.

The experiments also highlighted the critical role of latent dimension size. Moderate
latent dimensions provided a balance between the richness of representation and
computational efficiency. Excessively large latent dimensions, on the other hand, were
shown to degrade performance, particularly in simpler environments, likely due to
overfitting or unnecessary complexity.

Importance of Loss Function Selection: The choice of loss function was found
to be a crucial factor in the effectiveness of the autoencoder-based approach. KL
Divergence loss, which captures the nuances of probabilistic distributions, was more
effective than cross-entropy loss in aligning the model with opponent strategies. This is
particularly important when reconstructing action frequencies, as it allows the model to
better capture the variability and uncertainty inherent in opponent behaviours.

5.2 Implications for Future Research

The findings from this dissertation have several implications for future research in the
field of MARL and agent modelling:

Enhancing Model Complexity and Flexibility: Future research could explore ways
to further enhance the flexibility and scalability of autoencoder-based models. This
could involve developing more sophisticated architectures that can dynamically adjust
their complexity based on the environment’s characteristics or the observed behaviour
of opponents. Additionally, investigating the integration of other machine learning
techniques, such as attention mechanisms or recurrent neural networks, could lead to
models that better capture temporal dependencies and complex strategic patterns.



Expanding to Different Types of Environments: While this study focused on
a specific set of environments, future work could extend these findings to a broader
range of settings, including continuous action spaces, mixed cooperative-competitive
environments, and scenarios with more heterogeneous agent populations. Exploring
how agent modelling techniques perform in these varied contexts could provide deeper
insights into their generalizability and robustness.

Improving Computational Efficiency: Given the computational overhead associ-
ated with autoencoder-based modelling, future research should also focus on optimizing
these models for greater efficiency. This could involve developing more lightweight
architectures or exploring techniques for reducing the frequency of model updates
without sacrificing performance. Additionally, investigating the trade-offs between
model complexity and computational cost could help identify the optimal balance for
different types of MARL applications.

5.3 Conclusion

This dissertation has demonstrated the significant potential of autoencoder-based agent
modelling in enhancing the performance of MARL algorithms, particularly in complex
and strategic environments. The findings underscore the importance of carefully
selecting reconstruction targets, latent dimensions, and loss functions to optimize model
effectiveness. Moreover, the research highlights the need for further exploration into
more flexible and scalable modelling techniques that can adapt to a wide range of
environments and challenges.

By providing a comprehensive evaluation of agent modelling in MARL, this study
contributes valuable insights to the field and sets the stage for future research aimed
at developing more advanced and efficient multi-agent systems. The integration of
sophisticated agent modelling techniques promises to play a crucial role in the continued
advancement of MARL, enabling more robust, adaptable, and intelligent multi-agent
interactions in increasingly complex environments.
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Appendix B

AutoEncoder Learning Plots

The analysis of the autoencoder learning metrics is presented through a series of plots
that track loss and accuracy across different configurations in the MAPPO algorithm
on the MPE Simple Spread environment. The first plot (Figure B.1) represents the
observation loss, which demonstrates a steady decrease over time, eventually plateauing,
indicating that the autoencoder effectively learns to reconstruct observations. Similarly,
the reward reconstruction loss (Figure B.2) follows a comparable pattern, with the model
quickly converging to a stable level of performance.

In contrast, the action reconstruction loss (Figure B.3) shows a different trajectory.
Unlike the observation and reward losses, the action loss increases over time, which
corresponds with the nature of action frequencies being non-stationary as opponent
strategies evolve during training. This increase in action loss is also reflected in
the accuracy metric (Figure B.4), where accuracy trends tend to fluctuate, further
underscoring the challenge of modelling dynamic opponent behaviours.

Despite the challenges in accurately modelling action distributions, the episodic
returns, as discussed in the main text, still exhibit improvement. This suggests that
while the model may not perfectly capture every nuance of the opponents’ strategies,
the learned representations are sufficiently robust to contribute positively to the overall
performance of the MARL system.



Figure B.1: Observation Reconstruction
Loss over Time

Figure B.2: Reward Reconstruction
Loss over Time

Figure B.3: Action Reconstruction Loss
over Time

Figure B.4: Action Reconstruction Ac-
curacy over Time



Appendix C

Computational Overhead Analysis

The following section presents an analysis of the computational overhead associated with
integrating various forms of opponent modelling on the MAPPO algorithm, tested on the
MPE Simple Spread environment. The figures below display the mean execution time,
task clock time, CPU utilization, and page faults across different configurations: no agent
modelling, reward reconstruction, action reconstruction, observation reconstruction,
and combined reconstruction. These metrics help illustrate the relative computational
cost of each approach.

Figure C.1 shows the mean time taken for execution, highlighting that while the
baseline without agent modelling is the fastest, the differences in execution time for
the various opponent modelling methods are minimal. Task clock time, depicted
in Figure C.2, increases modestly with more complex reconstructions, particularly in
combined reconstruction. Overall, these results demonstrate that the overhead introduced
by opponent modelling is manageable and does not impose a significant computational
burden.

Figure C.1: Hyperfine Mean Time with Standard Deviation across different configurations.



Figure C.2: Task Clock (msec) across different configurations.

Figure C.3: Page Faults across different configurations.



Appendix D

Hyperparameter Configuration

This appendix provides the detailed hyperparameter settings used for the experiments
in this study. The configurations presented here pertain to the various components
of the Multi-Agent Proximal Policy Optimization (MAPPO) algorithm, including the
opponent modelling settings.

Parameter Value
action_selector soft_policies
mask_before_softmax True
buffer_size 20
batch_size_run 20
batch_size 20
target_update_interval_or_tau 0.01
lr 0.0003
hidden_dim 128
obs_agent_id True
obs_last_action False
obs_individual_obs False
agent_output_type pi_logits
entropy_coef 0.001
use_rnn True
standardise_returns False
standardise_rewards True
q_nstep 5
epochs 4
eps_clip 0.2
t_max 20050000

Table D.1: MAPPO Algorithm Hyperparameters



Parameter Value
opponent_modelling True or False
opponent_model_decode_obs True or False
opponent_model_decode_actions True or False
opponent_model_decode_rewards True or False
latent_dims [0-64]
batch_size_opponent_modelling 64
lr_opponent_modelling 0.0005
opponent_model_epochs 10

Table D.2: Opponent Model Hyperparameters
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