
Value Decomposition based on the Actor-Critic

framework for Cooperative Multi-Agent

Reinforcement Learning

Yuyang Zhou

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2022

Abstract

With the development of deep learning, Multi-Agent Reinforcement Learning (MARL)

has become a popular method in multi-agent decision-making tasks. In recent years,

algorithms under the Multi-Agent Actor-Critic (MAAC) framework achieved compet-

itive results in cooperative MARL by comparing achieved returns, such as MAA2C,

MADDPG, and MAPPO. However, the credit assignment problem is still challenging in

MAAC algorithms. Although some MAAC methods try to mitigate it, such as COMA,

they cannot achieve competitive returns. Therefore, Value Decomposition (VD) meth-

ods are proposed to mitigate the credit assignment problem. However, sometimes they

cannot achieve as high returns as MAAC methods. Most recently, the Value Decom-

position Actor-Critic (VDAC) framework, which implements VD methods for MAAC

methods, was proposed. However, all these algorithms are implemented with different

implementation details and the advantages of VDAC methods are vague. Therefore, we

reimplement VD methods for MAA2C and MADDPG with the same implementation

details and compare four VDAC algorithms to their original VD methods and MAAC

methods in a total of eight different tasks. The results of our experiments show that

VDAC methods are suitable to be used in environments containing numerous agents.

Finally, we empirically find that MAA2C+VD methods mitigate the credit assignment

problem in the MAAC framework.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Yuyang Zhou)

ii

Acknowledgements

Firstly, I need to appreciate Giorgos for his detailed co-supervision during the summer.

Besides that, I also want to thank Stefano for his supervision and academic resources.

Finally, I learned a lot at the Autonomous Agents Research Group. Thanks to all group

members for sharing their brilliant ideas.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Markov Decision Processes . 3

2.2 Temporal Difference Learning . 4

2.3 Policy-based Learning . 5

2.4 The Actor-Critic framework . 5

2.5 Deep Reinforcement Learning . 6

2.6 Multi-Agent Reinforcement Learning 6

2.6.1 Dec-POMDPs . 7

2.6.2 MARL algorithms . 7

3 Related Work 9
3.1 Centralised Policy Gradient Learning 9

3.1.1 MADDPG . 9

3.1.2 MAA2C . 10

3.2 Value Decomposition . 11

3.2.1 VDN . 11

3.2.2 QMIX . 12

4 Methodology 13
4.1 VDAC Methods . 13

4.1.1 VMIX . 13

4.1.2 VSUM . 15

4.1.3 FACMAC . 15

4.1.4 FACMAC-sum . 15

4.2 Implementation Details . 15

iv

5 Results 17
5.1 Baselines and Experimental Environments 17

5.1.1 Baselines . 17

5.1.2 Level-based Foraging . 17

5.1.3 Multi-Agent Particle Environments 18

5.2 Evaluation Protocol . 19

5.3 Performance Metrics . 19

5.4 Computing Resources . 19

5.5 The results for LBF . 20

5.5.1 VD methods . 21

5.5.2 MAAC methods . 21

5.5.3 VDAC methods . 22

5.6 The results for MPEs . 23

5.6.1 VD methods . 23

5.6.2 MAAC methods . 24

5.6.3 VDAC methods . 24

6 Analysis 26
6.1 Credit Assignment . 26

6.2 Suitable Environments for VDAC methods 27

6.3 Limitations . 27

6.4 Future Research . 28

7 Conclusions 29

Bibliography 30

v

Chapter 1

Introduction

Many multi-agent decision-making tasks can be modeled as multi-agent reinforcement

learning (MARL). Tasks also can be classified as cooperative, competitive, and mixed.

In this dissertation, we will mainly focus on cooperative tasks, which means all agents

will observe a shared reward rt at each time step. For example, multiple robots’

cooperative delivery in the warehouse and multiple agents aim to load food [25, 7].

In recent years, with the incorporation of deep learning, MARL algorithms have

achieved some great progress, such as Value Decomposition (VD) methods [32, 44, 40],

and centralised policy gradient methods [18, 11, 45]. Both of these two kinds of MARL

algorithms are under the Centralised Training Decentralised Execution (CTDE) training

scheme. Therefore, the CTDE training scheme plays an indispensable role in the

achieved progress. For the CTDE training scheme, agents have extra information, such

as other agents’ actions, and observations during training, but agents only have their own

sight during execution. The algorithms based on the Multi-Agent Actor-Aritic (MAAC)

framework are a paradigm of the CTDE training scheme. For example, MAA2C [5],

MADDPG [18], Actor-Attention-Critic [13], LIIR [8], and MAPPO [45] are all based

on the MAAC framework. Algorithms based on the MAAC framework combine the

advantages of value-based and policy-based algorithms, which can achieve a bias and

variance trade-off.

The credit assignment problem is proposed in the article [21], and discussed in

the article [1]. For MARL algorithms, the credit assignment problem still exists. In

cooperative MARL, all agents share the same global reward at each time step. In detail,

for example, in a football game, all agents will get a score when an agent shoots and

scores. This score should be only related to agents who shot, passed the ball, attracted

defence, etc. However, some agents even did nothing, they also got the reward. As

1

Chapter 1. Introduction 2

the training progresses, these agents will learn to do nothing for achieving the rewards.

Such agents are called lazy agents [34] in reinforcement learning.

Although there are some methods designed for dealing with the credit assignment

problem in MAAC algorithms, such as COMA [11], they cannot show a competitive

performance by comparing achieved returns in most cooperative tasks done by [25].

Currently, it is still challenging for MARL algorithms based on the MAAC framework,

especially with the increasing number of agents. As for value decomposition (VD)

methods, such as VDN [34], and QMIX [28], they have been the paradigm in MARL

algorithms for dealing with the credit assignment problem. However, most VD methods

are based on the Q learning framework, a kind of value-based algorithm, which has a

higher bias than policy-based algorithms.

Therefore, it is worthwhile to implement VD methods in the MAAC framework

for dealing with the credit assignment problem. This kind of algorithm is named

VDAC (Value Decomposition Actor-Critic) [33]. Indeed, there are several algo-

rithms [41, 33, 26] implementing VD methods in the MAAC framework. However,

some implementation details in these VDAC algorithms, such as T D(l), and the choice

for the optimizer are different in their code. Some researchers [9, 12, 4] assert that

implementation details sometimes highly influence the achieved returns for MARL algo-

rithms. Besides that, the advantages of VDAC methods are vague in previous research.

So, We would like to reimplement VDAC methods with the same implementation

details, and find out what is main advantage of VDAC methods.

In this dissertation, we reimplement VDN and QMIX for MAA2C, and MADDPG

with the same implementation details. Furthermore, We compare four reimplemented

VDAC methods to their original VD methods and MAAC methods. There are a total of

eight algorithms here. For the experiments, we evaluate these algorithms in two discrete

action-space environments, which are MPEs [18] and LBF [25, 7], totally including

eight tasks. According to our experiments, we empirically find that VDAC methods are

pretty suitable in environments containing numerous agents and dense rewards. Besides

that, we also find that the credit assignment problem is mitigated by MAA2C+VD

methods.

Chapter 2

Background

This chapter mainly introduces the required knowledge of reinforcement learning (RL)

for understanding the dissertation.

2.1 Markov Decision Processes

It is crucial to �rstly introduce Markov Decision Processes (MDPs) because most

reinforcement learning algorithms are designed for dealing with problems that can be

modeled as MDPs. A MDP [17] can be de�ned as a tuple< A;S;P;r > , where:

• A, the set of actions,

• S, the set of states,

• P, the transition probability:P(st+ 1j(st ;at)) denotes the probability that the

environment transits to statest+ 1 given the statest and actionat ,

• r, the reward value:r(st+ 1j(st ;at)) denotes the immediate reward received after

transiting from statest to st+ 1 due to actionat .

Within a MDP, the agent can interact with the environment during discrete time stepst.

At each time, an agent does an action,at , and the environment transits to a new state

st+ 1 with a certain probabilityP(st+ 1j(st ;at)) . Then, the agent achieves its rewardrt+ 1.

While the interaction between agents and the environment keeps going on, the transition

trajectory generates, described as< s0;a0; r1; :::;st ;at ; rt+ 1 > .

It is important that MDPs satisfy the Markov property (memorylessness) [20], which

means the possibility of future events only depends on the current state. In other words,

past states and future states are independent.

3

Chapter 2. Background 4

With the information above, it is possible to calculate the expected cumulative

returns for any given state or action-state pair. Therefore, we can de�ne the state value

(V-value) function, and the action-state value (Q-value) function, given a policyp,

which can be described as follows:

Vp(st) = E[Gt jst] = E[
¥

å
i= 0

girt+ i+ 1jst]; (2.1)

Qp(st ;at) = E[Gt jst ;at] = E[
¥

å
i= 0

girt+ i+ 1jst ;at]; (2.2)

wheregis the discount factor2 [0;1]. Because of the Markov property, we can further

rewrite the V-value function and Q-value function with Bellman equation [6]:

Vp(st) = å
A

p(at jst) å
st+ 1;rt+ 1

p(st+ 1j(st ;at))[rt+ 1 + gVp(st+ 1)]: (2.3)

Qp(st ;at) = å
st+ 1;rt+ 1

p(st+ 1j(st ;at))[rt+ 1 + gVp(st+ 1)]: (2.4)

2.2 Temporal Difference Learning

Temporal difference (TD) learning [37] is a paradigm of valued-based RL algorithms.

For TD learning, the agent can learn from the previous trajectory and update per time

step. The updating rule of TD is described as follows:

V(st) V(st) + a[rt+ 1 + gV(st+ 1) � V(st)]; (2.5)

wherea is the learning rate,g is the discount factor.

Q learning [42] is a classic off-policy example of TD learning, which updates the

Q-value function per time step. The updating rule is shown as follows:

Q(st ;at) Q(st ;at) + a[rt+ 1 + gmax
a

(Q(st+ 1;a)) � Q(st ;at)]: (2.6)

With the updating Q-value function, actions that can achieve higher returns should have

a higher Q-value and vice versa. In the execution time,e� greedy[39] is typically used

to select the action.

Although TD learning is widely used in RL, it is still a bootstrapping learning

method, especially with the incorporation of deep learning. Therefore, TD learning is a

biased estimation of Q-value. In the next section, a more direct learning method will be

introduced.

Chapter 2. Background 5

2.3 Policy-based Learning

Compared to value-based algorithms, policy-based algorithms directly learn the policy

pq(ajs) = p(ajs;q), wheres anda are the current state and action, andq is the parame-

ters for the policy. When agents need to execute, the choice of actions will be according

to the probability distribution ofpq(ajs). The theorem used for policy-based algorithms

is named thepolicy gradient theorem[35], which can be described as follows:

ÑqJ(q) =
Z

s
dp(s)

Z

a
Ñqlogpq(ajs)Qp(s;a)dads; (2.7)

wheredp(s) = limt! ¥ Pr(st = sjs0;p) is the state distribution within the policyp, and

ÑqJ(q) is the gradient of the expected cumulative return. After we have the gradient of

the expected cumulative return, we can use gradient ascent to update the policyp for

maximizing the expected cumulative return. The updating rule is shown below:

q q+ aÑqJ(q); (2.8)

wherea is the learning rate for the gradient ascent.

Policy-based algorithms directly learn the policy, however, they suffer from the

high variance problem. Finally, a popular framework named the actor-critic framework

combines the advantages of both value-based and policy-based algorithms. It will be

discussed speci�cally in the next section.

2.4 The Actor-Critic framework

There are numerous algorithms based on the Actor-Critic (AC) framework, such as

AC [16], advantage AC (A2C), and asynchronous advantage AC (A3C) [5], PPO [30],

DDPG [31]. The idea of AC algorithms is still based on gradient policy algorithms.

Within the AC framework, the policy gradient can be described as follows:

g = E[
¥

å
t= 0

F tÑqlogpq(at jst)]; (2.9)

whereF t can be any item shown below:

• å ¥
t= 0 rt , the total return,

• å ¥
t0= t rt0, the return after the current action,

• å ¥
t0= t rt0� b(st), the return incorporated with baseline,

Chapter 2. Background 6

• Qp(st ;at), the action-state value function

• Ap(st ;at) = Qp(st ;at) � Vp(st), the advantage function.

If F t equals any of the �rst three items above, it will be a kind of classic policy gradient

algorithm. These algorithms are unbiased estimations for the policy gradient, but they

will have high variance. IfF t = Qp(st ;at), it is the classic AC. IfF t = Ap(st ;at), it is

the A2C algorithm.

As we can see in equation 2.9, the termpq(at jst) is the actor, who determines the

agent's actions. The termF t is the critic, who learns the expected cumulative return

with a value-based method. That is why this framework is called actor-critic.

2.5 Deep Reinforcement Learning

The success of RL is highly related to the incorporation of deep learning. For valued-

based algorithms, we use Q-learning as an illustration. Deep neural networks are used

to approximate the Q-value, which becomes Deep Q-Learning (DQN) [22], perhaps

the most classic and famous deep RL algorithm. DQN minimises the TD loss to

approximate the Q-value, which can be represented as follows:

L(q) =
n

å
i= 1

[(yi � Q(st ;at ;qt))2]; (2.10)

whereq is the parameters in deep neural networks, andyi = gmax
a

Q(st+ 1;a;qt+ 1).

As for policy-based algorithms, neural networks are used to output the policy. They

also use the policy gradient to optimize the policy. As we discussed before, the AC

framework combines value-based and policy-based algorithms. Therefore, it is intuitive

that we use neural networks to represent the actorpq and the criticF t in equation 2.9.

Gradient ascent and minimising the TD loss are used to optimize the actor and the critic

respectively.

2.6 Multi-Agent Reinforcement Learning

Single-agent RL has been introduced in detail above. However, single-agent RL cannot

be applied to solve multiple agents' decision-making problems. Therefore, multi-agent

reinforcement learning (MARL) becomes necessary. Firstly, the derivative of MDPs

used in this dissertation will be introduced.

Chapter 2. Background 7

2.6.1 Dec-POMDPs

Dec-POMDPs is the abbreviation of Decentralised Partially Observable Markov Deci-

sion Processes. In this dissertation, all experiments are in fully cooperative environments.

A fully cooperative environment can be modeled as a Dec-POMDP [24], de�ned as a

tuple< U;S; f A jg;P;r; f O jg;W;h > , where:

• U, the set of agents,

• S, the set of states with initial states0,

• A j , the set of actions for agent j, withA = � jA j ,

• P, the state transition probability function:P(st+ 1j(st ;aaa)) means the probability

that the environment transits to statest+ 1 given the statest and the joint actionaaa

taken by agents,

• r, the global reward function:r(st+ 1j(st ;aaa), the immediate reward for all agents

after agents take the joint action,aaa in the statest ,

• O j , the set of observations for agent j, withO = � jO j ,

• W, the observation probability function,

• h, the horizon of the problem, determining the number of time steps is in�nite or

�nite.

As shown above,A = � jA j is the set of joint actions.O = � jO j is the set of joint

observations. At each time stept, a joint actionaaa = < a1; ::::::;a j > , wherea j 2 A j , is

selected. The next state of the environment is in�uenced by the joint actionaaa. In a Dec-

POMDP, each agent only knows its own action and observation. The joint observation

ooo = < o1; ::::::;o j > , whereo j 2 O j , is de�ned by the observation probability function

W= Pr(oooj(st+ 1;aaa)) . Besides that, each agent has an action-observation trajectoryt j ,

on which it conditions a policyp j (a j jt j) for agent j. The goal for MARL is to �nd a

policy P = f p1; :::;p j ; :::;png that can maximize agents' expected cumulative reward

over an in�nite or �nite number of time steps.

2.6.2 MARL algorithms

Most MARL algorithms are extensions of single-agent RL, introduced in Section 2.2,

Section 2.3, and Section 2.4. For extending single-agent RL to MARL, there are mainly

Chapter 2. Background 8

two methods, independent learning, and centralised training decentralised execution

(CTDE). As for independent learning [36], each agent only has their own observation

during both training and execution. In other words, each agent is independent of other

agents. This is an intuitive method that extends single-agent RL to MARL. However,

if we simply consider each agent independently, independent learning cannot achieve

competitive returns compared to centralised learning in some tasks [25] due to the

required complicated cooperation. Therefore, independent learning is more inclined to

be a baseline in MARL research.

CTDE, the mainstream in the current MARL, allows agents to share observations

during the training time. Each agent only has their own observation during the execution

time. The speci�c methods of CTDE will be introduced in therelated work chapter.

Chapter 3

Related Work

This chapter will mainly introduce previous achievements highly related to this dis-

sertation. Centralised training decentralised execution [10] (CTDE) is a paradigm of

current MARL. It allows each agent to share information, such as observation, and

actions with each other during training, but each agent's policy is only determined by

its own observation. At present, many competitive MARL algorithms by comparing

achieved returns are based on CTDE. In this dissertation, all used algorithms are also

based on CTDE. MARL algorithms based on CTDE can be classi�ed into two classes.

The �rst one is the centralised policy gradient learning, and the second one is value

decomposition (VD) methods. These two kinds of MARL will be discussed below.

3.1 Centralised Policy Gradient Learning

This kind of algorithm based on CTDE is also under the AC framework. However,

compared to the single-agent AC, centralised policy gradient learning has decentralised

actors and centralised critics. In other words, the actor only has its own observation,

whereas the critic has global information.

3.1.1 MADDPG

MADDPG is the abbreviation of Multi-Agent Deep Deterministic Policy Gradient [18],

which is the extension of DDPG [31] to MARL. Actors in MADDPG take the Q-values

as inputs. A Q-value can be described asQµµµ
i (xxx;a1; :::;aN), whereµµµ is the set of all agents'

deterministic policies,xxx is the extra information, such as other agents' observations, and

additional state information [18]. The outputs of actors are the deterministic policies.

9

Chapter 3. Related Work 10

The actions sampling from the deterministic policies will be the inputs of the critics.

Then each critic will output theQp
i (xxx;a1; :::;aN) to judge the actors' actions. Actions

that can achieve higher returns will receive higher Q-values and vice versa. Here is a

loop for MADDPG.

It is similar to policy gradient learning, the gradient of the expected cumulative

return for the agenti also can be represented as:

Ñqi J(qi) = Exxx;a� D[Ñqi µµµi(ai joi)Ñai Q
µµµ
i (xxx;a1; :::;aN)jai = µµµi(oi)]; (3.1)

whereqi is the parameter for the agenti, andD is the reply buffer containing experiences

of all agents. With this formula, we can use gradient ascentqi :qi + aÑqi J(qi) to

optimize actors. We minimise the TD loss to optimize the critics. the formula for the

TD loss can be shown as follows:

L (qi) = Exxx;a[(Qµµµ
i (xxx;a1; :::;aN) � y)2]; (3.2)

wherey = r i + rQµµµ0

i (xxx0;a0
1; :::;a0

N)ja j
0= µµµ0

j (o j)0, andµµµ0means the set of target policies

with parametersq0. A brief framework of MADDPG used in its original paper [18] is

shown in Figure 3.1.

As the discussion above, the actors in MADDPG directly output actions to the

critics. Therefore, according to the back propagation (BP) rule [43], when we optimize

the critic loss, it requires the gradient ofQµµµ
i (xxx;a1; :::;aN) with respect toqi. The BP

formula in this circumstance can be described as follows:

¶Qµµµ
i (xxx;a1; :::;aN)

¶qi
=

¶Qµµµ
i (xxx;a1; :::;aN)

¶ai

¶ai

¶qi
: (3.3)

From the above formula, it is obvious that the action space for MADDPG should be

differentiable, so the action space is required to be continuous. In the original paper,

they used Gumbel-Softmax [14, 19] to differentiate the action space for learning in

discrete action-space environments.

3.1.2 MAA2C

Multi-Agent A2C (MAA2C) is the extension of A2C to MARL, which learns a joint V-

value function instead of the Q-value function. The gradient of the expected cumulative

return for MAA2C can be given by:

Ñqi J(qi) = Eai � pi [Ñqi logpi(ai jt i)Al (xxx;ai)]; (3.4)

Chapter 3. Related Work 11

Figure 3.1: The framework of MADDPG [18]

whereAl (xxx;ai) = Ri + gVl (xxx0) � Vl (xxx), l is the parameters in the centralised critic, and

t i is the local action-observation history for agent i. The updating rule for MAA2C is

just like other centralised policy gradient algorithms, using gradient ascent to update

actors, minimising the TD loss to update the critic. Although it is a pretty simple

method to extend A2C to MARL, it still can show a competitive performance in discrete

action-space environments by comparing the achieved cumulative rewards [25].

3.2 Value Decomposition

Centralised policy gradient learning is more inclined toward policy-based algorithms,

whereas Value Decomposition (VD) methods are value-based algorithms. Based on

the fact that VD methods learn a joint Q-value, they only can be used in cooperative

environments. The two most common VD methods will be introduced below.

3.2.1 VDN

Value Decomposition Networks [34] (VDN) is the �rst VD method. It learns a linear

decomposition of the joint Q-value. VDN utilises networks to approximate the individ-

ual Q-value. Then individual Q-values are summed to a joint Q-value for training. The

Chapter 3. Related Work 12

updating rule for the joint Q-value is the same as Q-learning 2.6, which is minimising

the TD loss. Because of the linear decomposition of VDN, some complex non-linear

relationships between the joint Q-value and individual Q-values are hard for VDN to

learn. Therefore, a more complex VD method QMIX is designed.

Figure 3.2: The green part represents the mixing network. The blue part is the structure

for each agent [28]

3.2.2 QMIX

QMIX [28] utilises a mixing network to decompose the joint Q-value instead of a simple

sum used in VDN. The mixing network enables nonlinear decomposition for QMIX,

which can suit more complex scenarios. The restraint caused by the mixing network is

monotonicity, which means the optimal joint action should equal the combination of

individual actions. The framework of QMIX is shown in Figure 3.2, wheret i used in

the �gure represents the local action-observation history for agenti.

Chapter 4

Methodology

This dissertation reimplements VD for MADDPG and MAA2C with the same imple-

mentation details and �nds what kind of tasks are more suitable to use VDAC methods.

In this chapter, we will introduce baselines and our reimplemented algorithms in our

experiments. Besides that, the implementation details also will be introduced.

4.1 VDAC Methods

VDAC methods are the main algorithms that this dissertation would like to investigate.

As we mentioned in chapter 1, the credit assignment problem in the MAAC framework

is still challenging. In pure VD methods, the gradient of the joint Q-value will back-

propagate to an individual Q-value, which can give each agent a judgement about its

action. The action able to achieve a higher expected return will get a higher Q-value.

As training keeps going, each agent will learn which action can help the whole team

get higher expected returns. Therefore, VD methods can partially mitigate the credit

assignment problem. From our perspective, if we implement VD methods within the

MAAC framework, the bias will be lower than value-based methods because of the

centralised policy gradient, and the credit problem can be mitigated because of VD

methods. These two points will be veri�ed in chapter 5 and chapter 6. There are four

VDAC methods we investigate, and they will be introduced in the following subsections.

4.1.1 VMIX

VMIX means implementing the mixing network for MAA2C. However, it is notable

that MAA2C learns a centralised V-value. Therefore, VMIX uses a mixing network

13

Chapter 4. Methodology 14

to decompose the centralised V-value, instead of decomposing the joint Q-value. The

monotonicity for the joint Q-value is also extended to the centralised V-value, which

can be described as follow:

¶Vtot

¶Vi
� 0; i 2 f 1; :::;ng: (4.1)

VMIX is called VDAC-mix (value-decomposition actor-critic) in the paper [33]. The

gradient of the expected cumulative return can be described as follows:

ÑqJ(q) = Eai � p[Ñqlogp(ai jt i)(Q(s;aaa) � Vtot(s))] ; (4.2)

whereq denotes the shared parameters for all actors, andQ(s;aaa) = r + gVtot(s0), s0

means the previous state. The loss of the centralised and decomposed critic can be

represented as follows:

Lt(l) = (yt � Vtot(st))2 = (yt � fmix(Vl (o1
t); :::;Vl (on

t))) 2; (4.3)

wherefmix denotes the mixing network, andl denotes the parameters for the centralised

critic. yt = r + gVtot(st� 1). The structure for VMIX is shown in Figure 4.1.

Figure 4.1: The structure for VMIX. The blue part represents the actor networks. The

green part represents the decomposed centralised critic network.

Chapter 4. Methodology 15

4.1.2 VSUM

The structure for VSUM is pretty similar to VMIX. The only difference is replacing

the mixing network with the sum operation. The sum operation can be described as

follows:

Vtot(st) = Vl (o1
t) + Vl (o2

t) + ::: + Vl (on
t): (4.4)

Both the gradient of the expected cumulative return and the loss function for VSUM

are the same as equation 4.2, and equation 4.3.

4.1.3 FACMAC

FACMAC combines QMIX and MADDPG. It learns a centralised joint Q-value and

uses QMIX to decompose the centralised joint Q-value. The gradient of the expected

cumulative return for FACMAC [26] can be shown as follows:

ÑqJ(µµµ) = Exxx;µµµ� D[ÑqµµµÑµµµQµµµ
tot(xxx;µµµ;s)]; (4.5)

whereµµµ is the deterministic policies with the shared parametersq for all agents, andD is

the replay buffer. The centralised and decomposed critic can be updated by minimising

the following loss:

Lt(l) = (yt � Qµµµ
tot(xxx;µµµ; ttt))2 = (yt � fmix(Ql (t 1;a1

t); :::;Ql (t n;an
t))) 2; (4.6)

whereyt = r + gQtot(xxx0;µµµ0; ttt 0). Hereµµµ0means the target joint deterministic policy. And

fmix means the mixing network, the same as QMIX.

4.1.4 FACMAC-sum

FACMAC-sum simply replaces the mixing network in FACMAC with the sum operation,

just like the difference between VMIX and VSUM. The sum operation can be described

as follows:

Qµµµ
tot(xxx;µµµ; ttt) = Ql (t 1;a1

t) + Ql (t 2;a2
t) + ::: + Ql (t n;an

t): (4.7)

The rest parts for FACMAC-sum are the same as FACMAC.

4.2 Implementation Details

According to previous research [9, 12, 4], implementation details in MARL algorithms

sometimes are crucial for the expected cumulative return. Therefore, for ensuring all

Chapter 4. Methodology 16

algorithms are in a fair comparison, our implementations are based on the open-source

EPyMARL [25] codebase, the extension of PyMARL [29]. Other implementation

details we mainly considered includethe type of optimizer, the hidden dimension

for agents, and the number of steps for Q learning. In the original papers about

VDAC [41, 33, 26], they useTD(l) for their designed algorithm but use one-step

Q learning (TD(0)) for other algorithms. Some researchers [12] think comparing

algorithms with different updating steps is unfair. Therefore, we compare all algorithms

with the same implementation details shown below:

• optimizer: Adam [15],

• hidden dimension: 128,

• n-step: 5.

Chapter 5

Results

This chapter will �rstly introduce baselines, the experimental environments, and each

task we used. Furthermore, the evaluation protocol, performance metrics, and computing

resources will be introduced. Finally, we will represent the results of our experiments

and gives some explanations for our results.

5.1 Baselines and Experimental Environments

The baselines and environments used in our experiments will be brie�y introduced.

Notably, all environments for our experiments are cooperative, and all action spaces are

discrete.

5.1.1 Baselines

Both MAAC methods and VD methods are our baselines. MAAC methods we used

are MADDPG and MAA2C. VD methods we used include QMIX and VDN. The

methods for these four algorithms have been introduced speci�cally in Section 3.1, and

Section 3.2.

5.1.2 Level-based Foraging

In the Level-Based Foraging (LBF) [2, 3] environment, agents need to collect food

items scattered randomly in a grid-based world. Each agent has six actions, moving

in four directions (up, down, left, right), waiting, and collecting food items. Besides

that, food items and agents are assigned levels. When agents would like to successfully

collect a food item, the sum of levels for agents around the food must be higher than or

17

Chapter 5. Results 18

equal to the level of the collected food. If agents successfully collect a food item, all of

them will receive a shared reward equal to the level of the collected food item.

The range of the grid-based world, the number of agents, and the number of food

can be speci�ed. In our experiments, we only tune the number of agents and the number

of food. The observation space in all our LBF tasks is 15*15. An episode will end

after 50 steps. For the reward function, we set a shared reward equal to the level of the

collected food item for all agents when a collecting operation is successful. Finally, in

all our experiments, agents are not required to collect a food item simultaneously.

This environment allows different kinds of tasks by tuning speci�c parameters.

More details about the LBF environment can be found on GitHub, under the MIT

licence:https://github.com/uoe-agents/lb-foraging .

The naming convention for LBF tasks is thats� s� Np� M f . For example, the task

15� 15� 3p� 5f means three agents aim to load �ve food items in a 15x15 grid world.

5.1.3 Multi-Agent Particle Environments

Multi-agent Particle Environments (MPEs) [23] contains several two-dimensional tasks.

We used three tasks in MPEs, which are Speaker-Listener, Spread, and Predator-Prey. In

MPEs, agents observe other agents' locations and locations of landmarks. The normal

action space for each agent in MPEs is two-dimensional navigation, containing staying,

moving up, moving down, moving left and moving right. The reward in our experiments

is also shared by all agents. Then each task we used will be introduced in detail.

In the Speaker-Listener task, there are two agents, a speaker, and a listener, and three

landmarks. Speaker cannot move but can observe the listener's target landmark, and tell

the listener's relative location from the target landmark, and the recommended velocity

to the listener. The listener cannot observe its own target landmark but can receive the

message from the speaker. The goal of the two agents is to navigate the listener to its

target landmark. The reward shared by two agents is the negative Euclidean distance of

the listener towards its target landmark.

In the Spread task, three agents have their own landmark. All three agents aim to

move to their own target landmark. During the moving time, they also need to avoid

collisions with each other. The reward for agents is the sum of the negative distance of

each agent towards their target landmarks and punishment will be applied if a collision

happens.

It is worthwhile to mention that the Predator-Prey task is originally a mixed task.

Chapter 5. Results 19

There are three predators, one prey, and two obstacles. Predators aim to cooperatively

catch the prey. The prey with a higher velocity aims to circumvent predators. All agents

can observe their own relative location to other agents and obstacles. In the paper[25],

they trained the prey agent by MADDPG for 25,000 episodes to make the task fully

cooperative. In this dissertation, we use the same method. Therefore, the modi�ed

Predator-Prey task contains three agents controlling three predators. Predators need to

cooperate with each other to catch the prey pretrained by MADDPG. All predators will

be rewarded if they catch the prey.

5.2 Evaluation Protocol

For a fair comparison between sample-ef�cient off-policy algorithms and on-policy

algorithms, we refer to the protocol used in the benchmarking paper by Papoudakis

et al. [25]. We train off-policy algorithms for 20 million time steps and on-policy

algorithms for 2 million time steps for all experiments. We perform in total 400

evaluations of each algorithm at constant intervals during training and each evaluation

for 100 episodes.

5.3 Performance Metrics

We mainly consider two metrics for comparing the performance of each algorithm. Two

performance metrics are shown below:

• Maximum returns: the highest return value from 400 evaluations during training.

The highest value will be the average across �ve random seeds with the95%

con�dence interval.

• Average returns: the average returns, also across �ve random seeds, achieved

in all evaluation steps during training. The average returns and their con�dence

intervals will be plotted in a curve.

5.4 Computing Resources

All experiments presented in this dissertation were performed on CPUs. We used MLP

clusters, and Eddie clusters to train our algorithms. The main types of CPU models are

Chapter 5. Results 20

Intel(R) Xeon(R) CPU E7- 4830 @ 2.13GHz, Intel(R) Xeon(R) CPU E5-2630 v4 @

2.20GHz, and Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz.

5.5 The results for LBF

The average returns and maximum returns for LBF tasks are shown in Figure 5.1, and

Table 5.1 respectively. Generally, it is easy to see that MAAC algorithms can achieve

both higher maximum returns and average returns in 3p-5f and 5p-5f tasks than both

VD methods and VDAC methods. However, with the increasing number of agents and

food items, VSUM and VMIX start to achieve both higher returns and average returns

than other algorithms. In the following subsections, each kind of algorithm will be

analysed speci�cally.

Figure 5.1: The average returns of 5 LBF tasks. All curves are plotted across 5 random

seeds with the 95%con�dence interval.

Chapter 5. Results 21

Table 5.1: Normalised maximum returns for LBF tasks across �ve random seeds with

the 95% con�dence interval. The highest return for each task has been bold.

ALGS n TASKS 15*15-3P-5F 15*15-5P-5F 15*15-5P-20F 15*15-8P-10F 15*15-15P-15F

QMIX 0.029� 0.001 0.055� 0.042 0.066� 0.10 0.104� 0.055 0.276� 0.193

VDN 0.040� 0.004 0.115� 0.004 0.071� 0.003 0.204� 0.026 0.366� 0.056

MAA2C 000:::555222000��� 000:::000111666 000:::888666666��� 000:::000222222 0.289� 0.010 0.541� 0.029 0.747� 0.018

VMIX 0.347� 0.230 0.602� 0.141 0.391� 0.002 0.671� 0.002 0.852� 0.030

FACMAC 0.075� 0.029 0.182� 0.017 0.144� 0.017 0.245� 0.097 0.541� 0.089

MADDPG 0.109� 0.004 0.183� 0.010 0.145� 0.002 0.332� 0.010 0.515� 0.038

VSUM 0.481� 0.106 0.726� 0.010 000:::444222666��� 000:::000111111 000:::999222666��� 000:::000555777 000:::999555333��� 000:::000222444

FACMAC-SUM 0.067� 0.022 0.180� 0.033 0.161� 0.035 0.319� 0.016 0.515� 0.038

5.5.1 VD methods

Generally, VD methods achieved the lowest return in all LBF tasks. Even in3p� 5f ,

5p� 5f , and5p� 20f tasks, VD methods almost learned nothing during training. We

believe those results are caused by sparse rewards in these tasks because suf�cient

rewards are required for decomposing the global Q-value into individual Q-values.

Although rewards are dense in task5p� 20f , agents are too few to collect 20 food

items. Under this circumstance, the time for collecting all food items is far from enough.

Therefore, the �nal return is still low. In the rest two tasks,8p� 10f , and15p� 15f

with more agents, VD methods achieve slightly higher returns than previous tasks. This

also proves our thought that VD methods require dense rewards to decompose the joint

value.

5.5.2 MAAC methods

MAA2C and MADDPG are two baselines in this dissertation. MMA2C can achieve

the highest maximum and average returns in3p� 5f , 5p� 5f tasks. However, as the

number of agents and food items grows, they cannot achieve returns as high as they

achieved in the �rst two tasks. We believe the requirement for cooperation between

agents is more strict because of the higher number of food items. Besides that, with

more agents in the environment, perhaps there will be more lazy agents who did

nothing because of the centralised V-value in MAA2C. That is the reason we think

why MAA2C cannot achieve higher returns than MAA2C+VDs algorithms. As for

MADDPG, although each actor can get their own Q-value to consider their policies,

Chapter 5. Results 22

the Gumbel-Softmax function used for discretising the action spaces seriously hinders

the achieved returns of MADDPG in discrete action-space environments. Therefore, it

always cannot achieve higher returns than MAA2C in all LBF tasks.

5.5.3 VDAC methods

VDAC methods are mainly algorithms we research. The results for them are perfectly

under our expectations. They will be analysed as follows.

VMIX achieved slightly lower returns than VSUM. We believe that is because the

relationship between the joint V-value and individual V-values is relatively simple in

LBF tasks instead of some complex non-linear combinations. As we can see in LBF

tasks, agents around a food item simply collect the food together. From our perspective,

the degree of contributions to the achieved reward depends only on the level of the

participating agents. Therefore, a simple sum operation is suf�cient to represent the

relationship between the joint V-value and individual V-values. In tasks with a few

agents and sparse food items, VSUM and VMIX cannot achieve higher returns than

MAA2C in 3p� 5f , 5p� 5f tasks. The reason for this we believe is similar to the

reason for low returns achieved by pure VD methods. The mixer requires suf�ciently

dense rewards to learn how to decompose the joint V-value. If rewards are so sparse

in the environment, the joint V-value is more inclined to be randomly decomposed

into agents' individual V-values. With more agents and food items, VSUM and VMIX

achieved the �rst two high returns among all eight algorithms, and their achieved returns

are signi�cantly higher than other algorithms. We think the mixer here decreases the

number of lazy agents because each actor will have a decomposed V-value to consider

their actions rather than a centralised V-value for all agents like MAA2C.

MADDPG+VD methods cannot achieve a competitive return almost in all tasks,

similar to MADDPG. Papoudakis et al. [25] mentioned that using Gumbel-Softmax is a

biased categorical reparametarisation. Besides that, With the incorporation of the mixer

in MADDPG, the mixer also requires suf�ciently dense rewards to learn to decompose

the global Q-value. Besides that, the idea for decomposing the centralised critic in

MAA2C is to give each actor a critic to supervise its actions. However, each actor in

MADDPG already has an individual critic to supervise their actions. In this case, the

mixing network seems to be a little bit redundant. Perhaps MADDPG+VD methods

can achieve much higher returns than MADDPG in some continuous action-space

environments, such as MAMuJoCo [26], an environment for continuous multi-agent

Chapter 5. Results 23

robotic control. However, at least in LBF tasks, MADDPG+VD methods cannot show a

competitive return.

5.6 The results for MPEs

The average returns across �ve random seeds and maximum returns with the 95%

con�dence interval are respectively shown in Figure 5.2, and Table 5.2. It is obvious

that MAA2C achieves the highest returns in all MPE tasks. However, in the last two

tasks, the difference between the achieved returns of MAA2C and VSUM becomes

smaller. VD methods perform much more competitively than they performed in LBF

tasks. All algorithms will be discussed below in detail.

Figure 5.2: Average returns of 3 MPE tasks. All curves are plotted across 5 random

seeds with the 95%con�dence interval.

5.6.1 VD methods

VD methods show a much better performance in MPE tasks than they performed in

LBF tasks by comparing their achieved returns. We believe this is because of the dense

	Introduction
	Background
	Markov Decision Processes
	Temporal Difference Learning
	Policy-based Learning
	The Actor-Critic framework
	Deep Reinforcement Learning
	Multi-Agent Reinforcement Learning
	Dec-POMDPs
	MARL algorithms

	Related Work
	Centralised Policy Gradient Learning
	MADDPG
	MAA2C

	Value Decomposition
	VDN
	QMIX

	Methodology
	VDAC Methods
	VMIX
	VSUM
	FACMAC
	FACMAC-sum

	Implementation Details

	Results
	Baselines and Experimental Environments
	Baselines
	Level-based Foraging
	Multi-Agent Particle Environments

	Evaluation Protocol
	Performance Metrics
	Computing Resources
	The results for LBF
	VD methods
	MAAC methods
	VDAC methods

	The results for MPEs
	VD methods
	MAAC methods
	VDAC methods

	Analysis
	Credit Assignment
	Suitable Environments for VDAC methods
	Limitations
	Future Research

	Conclusions
	Bibliography

