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Lecture Outline

Today:

• Multi-agent systems
• Multi-agent learning and challenges
• Models of interaction
• Learning goals

Next time:

• Learning algorithms
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Multi-Agent Systems

• Multiple agents interact in shared
environment

• Each agent with own observations,
actions, goals, ...

• Agents must coordinate actions to
achieve their goals
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Multi-Agent Systems – Applications

Games Robot soccer Autonomous cars

Negotiation/markets Wireless networks Smart grid
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Why Multi-Agent Systems?

Example: Level-based foraging

• 3 robots (circles) must collect all items in
minimal time

• Robots can collect item if sum of their
levels ≥ item level

• Action is tuple (rob1, rob2, rob3) with
robi ∈ {up, down, left, right, collect}
⇒ 125 possible actions!
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Why Multi-Agent Systems?

Idea of multi-agent systems:
Decompose intractable decision problem into smaller decision problems

• Use 3 agents, one for each robot
Each agent has only 5 possible actions!
⇒ Factored action space

New challenge:

• Agents must coordinate actions with
each other to accomplish goals
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Why Multi-Agent Systems?

More reasons for multi-agent systems:

Decentralised control: may not be able to control system in one central place
(e.g. multiple robots working together, without communication)

State-space reduction: multi-agent decom-
position may also reduce size of state space
for individual agents (e.g. if only a subset of
state features are relevant for an agent)
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Multi-Agent Learning

Multi-agent learning:

• Learning is process of improving performance via experience
• Can agents learn to coordinate actions with other agents?
• What to learn?
⇒ How to select own actions
⇒ How other agents select actions
⇒ Other agents’ goals, plans, beliefs, ...
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Challenges of Multi-Agent Learning

Non-stationary environment:

• MDP assumes stationary environment:
environment dynamics do not change
over time

• If environment includes learning
agents, environment becomes
non-stationary from the perspective of
individual agents
⇒ Markov assumption broken

Moving target problem
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Challenges of Multi-Agent Learning

Multi-agent credit assignment:

• We know (temporal) credit-assignment problem from standard RL
⇒ What past actions led to current reward?

• Now we must also ask: whose actions led to current reward?

Example: If the two agents in centre collect
L3 item, everyone gets +1 reward. How do
agents know that the agent on the left did
not contribute to the reward?
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Multi-Agent Models

Standard models of multi-agent interaction:

• Normal-form game
• Repeated game
• Stochastic game
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Normal-Form Game

Normal-form game consists of:
• Finite set of agents N = {1, ...,n}
• For each agent i ∈ N:

• Finite set of actions Ai
• Reward function ui : A→ R, where A = A1 × ...× An (joint action space)

Each agent i selects policy πi : Ai → [0, 1], takes action ai ∈ Ai with probability πi(ai),
and receives reward ui(a1, ...,an)

Given policy profile (π1, ..., πn), expected reward to i is

Ui(π1, ..., πn) =
∑
a∈ A

ui(a)
∏
i∈N

πi(ai)
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Normal-Form Game: Prisoner’s Dilemma

Example: Prisoner’s Dilemma

• Two prisoners are interrogated in separate rooms
• Each prisoner can Cooperate (C) or Defect (D)
• Reward matrix:

C D
C -1,-1 -5,0
D 0,-5 -3,-3
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Normal-Form Game: Rock-Paper-Scissors

Example: Rock-Paper-Scissors

• Two players, three actions
• Rock beats Scissors beats Paper beats Rock
• Reward matrix:

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0
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Repeated Game

Learning is to improve performance via experience
• Normal-form game is single interaction⇒ no experience!
• Experience comes from repeated interactions

Repeated game:
• Repeat the same normal-form game for time steps t = 0, 1, 2, 3, ...
• At time t, each agent i...
– selects policy πti
– samples action ati with probability π

t
i (a

t
i)

– receives reward ui(at) where at = (at1, ...,atn)
• Learning: modify policy πti based on history H

t = (a0,a1, ...,at−1)
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Stochastic Game

Agents interact in shared environment

• Environment has states, and actions have effect on state
• Agents choose actions based on observed state

Example: Predator-prey

• Predator agents (red) must capture prey
• State: agent positions
• Actions: up, down, left, right
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Stochastic Game

Stochastic game (or Markov game) consists of:

• Finite set of agents N = {1, ...,n}

• Finite set of states S

• For each agent i ∈ N:
• Finite set of actions Ai
• Reward function ui : S× A→ R, where A = A1 × ...× An

• State transition probabilities T : S× A× S→ [0, 1]
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Stochastic Game

Game starts in initial state s0 ∈ S

At time t, each agent i...

• Observes current state st

• Chooses action ati with probability πi(s
t,ati)

• Receives reward ui(st,at1, ...,atn)

Then game transitions into next state st+1 with probability T(st,at, st+1)

Repeat T times or until terminal state is reached

⇒ Learning is now based on state-action history Ht = (s0,a0, s1,a1, ...., st)
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Stochastic Game — Expected Return

Given policy profile π = (π1, ..., πn), what is expected return to agent i in state s?

Ui(s, π) =
∑
a∈A

(∏
j∈N

πj(s,aj)
)[

ui(s,a) + γ
∑
s′∈S

T(s,a, s′)Ui(s′, π)
]

• Analogous to Bellman equation
• Discount rate 0 ≤ γ < 1 makes return finite
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Stochastic Game: Soccer Keepaway

Example: Soccer Keepaway
• “Keeper” agents must keep ball away from “Taker” agents
• State: player positions & orientations, ball position, ...
• Actions: go to ball, pass ball to player, ...

Video: Keepaway
Source: http://www.cs.utexas.

edu/~AustinVilla/sim/keepaway
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Solving Games

What does it mean to solve a game?

• If game has common rewards, ∀i : ui = u, then solving game is like solving MDP
⇒ Find policy profile π = (π1, ..., πn) that maximises Ui(s, π) for all s

• But if agent rewards differ, ui ̸= uj, what should π optimise?

Many solution concepts exist:

• Minimax solution
• Nash/correlated equilibrium
• Pareto-optimality

• Social welfare & fairness
• No-regret
• Targeted optimality & safety
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Minimax

Two-player zero-sum game: ui = −uj
• e.g. Rock-Paper-Scissors, Chess

Policy profile (πi, πj) is minimax profile if

Ui(πi, πj) = max
π′
i

min
π′
j

Ui(π′
i , π

′
j) = min

π′
j

max
π′
i

Ui(π′
i , π

′
j) = −Uj(πi, πj)

Reward that can be guaranteed against worst-case opponent

• Every two-player zero-sum normal-form game has minimax profile
(von Neumann and Morgenstern, 1944)

• Every finite or infinite+discounted zero-sum stochastic game has minimax profile
(Shapley, 1953)
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Nash Equilibrium

Policy profile π = (π1, ..., πn) is Nash equilibrium (NE) if

∀i ∀π′
i : Ui(π

′
i , π−i) ≤ Ui(π)

No agent can improve reward by unilaterally deviating from profile
(every agent plays best-response to other agents)

Every finite normal-form game has at least one NE (Nash, 1950)
(also stochastic games, e.g. Fink (1964))

• Standard solution in game theory
• In two-player zero-sum game, minimax is same as NE
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Nash Equilibrium – Example

Example: Prisoner’s Dilemma
• Only NE in normal-form game is (D,D)
• Normal-form NE are also NE in infinite
repeated game

• Infinite repeated game has many more
NE→ “Folk theorem”

C D
C -1,-1 -5,0
D 0,-5 -3,-3

Example: Rock-Paper-Scissors
• Only NE in normal-form game is
πi = πj = ( 13 ,

1
3 ,

1
3)

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0
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The Equilibrium Legacy

The “Equilibrium Legacy” in multi-agent learning:
• Quickly adopted equilibrium as standard goal of learning
• But equilibrium (e.g. NE) has many limitations...

1. Non-uniqueness
Often multiple NE exist; how should agents choose same one?

2. Sup-optimality
NE may not give highest rewards to agents

3. Incompleteness
NE does not specify behaviours for off-equilibrium paths

4. Rationality
NE assumes all agents are rational (= perfect reward maximisers)
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Pareto Optimum

Policy profile π = (π1, ..., πn) is Pareto-optimal if there is no other profile π′ such that

∀i : Ui(π′) ≥ Ui(π) and ∃i : Ui(π′) > Ui(π)

Can’t improve one agent without making other agent worse off
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Social Welfare & Fairness

Pareto-optimality says nothing about social welfare and fairness

Welfare and fairness of profile π = (π1, ..., πn) often defined as

Welfare(π) =
∑
i
Ui(π) Fairness(π) =

∏
i
Ui(π)

π is welfare/fairness-optimal if it maximises Welfare(π)/Fairness(π)
⇒ Any welfare/fairness-optimal π is also Pareto-optimal (Why?)

26



No-Regret

Given history Ht = (a0,a1, ...,at−1), agent i’s regret for not having taken action ai is

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,a
τ
−i)

Policy πi achieves no-regret if

∀ai : lim
t→∞

1
t Ri(ai|H

t) ≤ 0

(Other variants exist)
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No-Regret

Like Nash equilibrium, no-regret widely used in multi-agent learning

But, like NE, definition of regret has conceptual issues

• Regret definition assumes other agents don’t change actions

Ri(ai|Ht) =
t−1∑
τ=0

ui(ai,aτ−i)− ui(aτi ,a
τ
−i)

⇒ But: entire history may change if different actions taken!

• Minimising regret not generally same as maximising reward
e.g. (Crandall, 2014)
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Targeted Optimality & Safety

Many algorithms designed to achieve some version of targeted optimality and safety:

• If other agent’s policy πj is in a defined class, agent i’s learning should converge
to best-response

Ui(πi, πj) ≈ max
π′
i

Ui(π′
i , πj)

• If πj not in class, πi should at least achieve safety (maximin) reward

Ui(πi, πj) ≈ max
π′
i

min
π′
j

Ui(π′
i , π

′
j)

Policy classes: non-learning, memory-bounded, finite automata, ...
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Reading (Optional)

• G. Laurent, L. Matignon, N. Le Fort-Piat. The World of Independent Learners is not
Markovian. International Journal of Knowledge-Based and Intelligent Engineering
Systems, 15(1):55–64, 2011

• Our RL reading list contains many survey articles on multi-agent learning:
https://eu01.alma.exlibrisgroup.com/leganto/public/44UOE_INST/lists/
22066371180002466?auth=SAML&section=22066371280002466

• AIJ Special Issue “Foundations of Multi-Agent Learning” (2007)
https://www.sciencedirect.com/journal/artificial-intelligence/vol/
171/issue/7
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