Reinforcement Learning

Multi-Agent Learning Il

Stefano V. Albrecht

THE UNIVERSITY of EDINBURGH

informatics

Lecture Outline

Independent learning

Joint action learning

Game-theoretic RL

Opponent modelling RL

Learning in mixed groups

Recap: Multi-Agent Systems

Environment

e Multiple agents interact in shared
environment

e Each agent with own observations,

actions, goals, ...
® Actions

. . o Domain
° Agents must coordinate actions to knowledge

achieve their goals

o Goals

© Actions

® Domain
knowledge

Multi-Agent Learning

Last time we discussed:
e Models of multi-agent interaction
= Repeated games, Stochastic games
e Solution concepts for games
= For common rewards: maximise expected return (like MDP)

= Zero-sum/general rewards: minimax, Nash equilibrium, Pareto, welfare, ...

Now: multi-agent learning

e Can agents learn to solve game through repeated interactions?

Independent Learning

Basic approach: independent learning (IL)

e Fach agent uses a single-agent RL algorithm (e.g. Q-learning)

e Treat game like MDP, agents do not model other agents

IL can be successful:
e TD-Gammon used IL,
beat Backgammon champion

e AlphaGo used IL, B
beat Go champion

Independent Learning

Problem with IL: high variance in updates
e Independent Q-learners: each agent i maintains Q-table Qj(s, a;)

e After reward r; = uj(s, an, ..., an), update Qj(s, a;) toward r; + Y maxg Qi(s',a))

Repeated RPS:

e If (a1,a;) = (R, S), then ry = +1 R P S

e If (a1,02) = (R, P), then r; = —1 R100|-11]1-1
Pl1-1] 00 [-11

= Agent 1 cannot tell when reward is +1/—1! S|-1111-11] 0,0

(unless we add actions to state; why?)

Joint Action Learning

Reduce variance by learning values for joint actions: Q;(s, a4, a,)
e Now can differentiate between +1/—1 rewards
e Space requirement is exponential in agents, O(|A1 x -+ x Ap|)

e Use function approximation to compress and generalise

Joint Action Learning

Reduce variance by learning values for joint actions: Q;(s, a4, a,)
e Now can differentiate between +1/—1 rewards
e Space requirement is exponential in agents, O(|A1 x -+ x Ap|)

e Use function approximation to compress and generalise

But: Qi(s,as,...,an) alone is no longer enough to find best action for |
e How to evaluate maxq, Qi(S, a1, ...,0n) ?

= Best action depends on actions of other agents!

How to select action from Q;? How to update Q;?

Game-Theoretic Reinforcement Learning

Joint action Q-tables define normal-form game:

e Agent i stores a Q-table Q; for every agentj € N
(assumes agent can observe all agents’ actions and rewards)

e Reward functions for normal-form game in state s are
uj(as,...,an) = Qi(s,ai, ..., an)

We can solve the normal-form game defined by

M= (= Qu(s).++ 1 un = Qu(9))

Game-Theoretic Reinforcement Learning

Solution of ['s is a policy profile (7, ..., my) with certain properties (e.g. NE)

= Use 7r; to select action for agent i

Value of I's to agentj is expected reward under solution (7, ..., m)
Val(Fs) = > uj(a) [] mx(ar)
acA ReN

Now:

= Update Q; towards target: r; +~ Val;(l's)

Joint Action Learning with Game Theory

JAL-GT (we control agent i):

1: Initialise: Qj(s,a) =0forallje Nandse S,acA

2: repeat:

3:

4:

5:

®

Observe current state s
With probability e: choose random action a;
Else: solve I's to get policies (71, ..., m), then sample action a; ~ ;(s)
Observe joint action a = (ay, ..., an), rewards r; for all j, and next state s’
for each j do

Q(s,a) « Qi(s,a) + a [r; + v Vali(Ts) — Qi(s, a)]

Minimax-Q, Nash-Q, CE-Q

Minimax-Q uses minimax solution (Littman, 1994)

e Converges to unique value in two-player zero-sum games
= Any such game has unique minimax value
e Minimax profile can be computed with linear programming (LP)

Nash-Q uses Nash equilibrium (Hu and Wellman, 2003)
CE-Q uses correlated equilibrium (Greenwald and Hall, 2003)

e Converges to equilibrium under highly restrictive conditions
= Problem: often no unique equilibrium value in general-reward games

e Compute CE with LP, compute NE with quadratic programming

10

Example: Minimax-Q in Grid Soccer (Littman, 1994)

e Episodes start in left state with random ball assignment
e Agent wins episode if it moves the ball into opponent goal

e Agent loses ball to opponent if it moves into opponent’s location

Against unknown opponent, optimal policy must randomise (right state; why?)

n

Example: Minimax-Q in Grid Soccer (Littman, 1994)

MR MM QR QQ
% won games | % won games | % won games | % won games

vs. random

vs. hand-built

vs. MR-challenger
vs. MM-challenger
vs. QR-challenger
vs. QQ-challenger

Table 3: Results for policies trained by minimax-Q (MR and MM) and Q-learning (QR and QQ).

e MR: minimax-Q trained against random opponent
e MM: minimax-Q trained against minimax-Q

QR: Q trained against random opponent

QQ: Q-learning trained against Q-learning (IL)

“X-challenger” is optimal policy against final policy learned by X
12

Example: Minimax-Q in Grid Soccer (Littman, 1994)

MR MM QR QQ
% won games | % won games | % won games | % won games
vs. random 993 6500 993 7200
vs. hand-built 48.1 4300 537 5300
vs. MR-challenger 350 4300
vs. MM-challenger 37.5 4400
vs. QR-challenger
vs. QQ-challenger

Table 3: Results for policies trained by minimax-Q (MR and MM) and Q-learning (QR and QQ).

e Minimax-Q learns “safe” policy that works against any opponent

= Minimax policy guarantees minimum average 50% win

e Lower % win against challenger because MR/MM did not fully converge during training, so
could be exploited by optimal challenger

13

Example: Minimax-Q in Grid Soccer (Littman, 1994)

MR MM QR QQ
% won games | % won games | % won games | % won games
vs. random 99.3 6500 993 7200 994 11300 99.5 8600
vs. hand-built 48.1 4300 537 5300 26.1 14300 76.3 3300
vs. MR-challenger 350 4300
vs. MM-challenger 375 4400
vs. QR-challenger 0.0 5500
vs. QQ-challenger 0.0 1200

Table 3: Results for policies trained by minimax-Q (MR and MM) and Q-learning (QR and QQ).

e Q-learning optimises against specific opponent, can learn strong performance

e Problem: overfits to opponent, does not generalise well to other opponents
= Challenger exploits deterministic Q-learning policies

Opponent Modelling & Best Response

Game theory solutions are normative: they prescribe how agents should behave
e E.g. minimax assumes worst-case opponent

e Eg NE assumes agents are perfect rational optimisers

= What if agents don't behave as prescribed by solution?

15

Opponent Modelling & Best Response

Game theory solutions are normative: they prescribe how agents should behave
e E.g. minimax assumes worst-case opponent

e Eg NE assumes agents are perfect rational optimisers

= What if agents don't behave as prescribed by solution?

Other approach: opponent modelling with best response

e Learn models of other agents to predict their actions

e Compute optimal action (best response) against agent models

15

Opponent Modelling

Observed Predicted
interaction history ——»| Agent model ——> property of interest
(past actions, states, ...) (actions, class, goal, ...)

Many kinds of opponent modelling exist:

Policy reconstruction Recursive reasoning

Type-based reasoning Graphical methods

Classification Group modelling

Plan recognition Implicit modelling

Policy Reconstruction

Policy reconstruction: learn model #; ~ 7; from observations

Conditional action frequency:

i(s,a) o< Y [af =ajly Many modifications

t5i—s possible — Ideas?

/

In general, can train model with supervised learning on pairs (st, af)

e E.g decision tree, neural network, finite state machine, ...

e Model should support incremental updating

Best Response

Expected value of action a; in state s against models 7; is

ZO (s,a;,a HWJ (s.a)) Assumes independent
j#i agents (why?)

a_; is action tuple for all agents except i
Best response is action with maximum expected value: arg maxq, EV(S, a;)

Use EV(s, a;) in place of Q-table for action selection and update targets

Joint Action Learning with Opponent Modelling

JAL-OM (we control agent i):
1: Initialise: Qi(s,a) = 0 forall s € S,a € A; models #;(s,) = Ai forj #1i
2. repeat:
3. Observe current state s
4 With probability e: choose random action q;
5. Else: choose best-response action arg maxg, EV(S, a;)
6: Observe joint action a = (ay, ..., an), own reward r;, and next state s’
7. foreachjdo
8: Update model #; with new observations
9 Qi(s,a) « Qi(s,a) + a |ri +ymaxy EV(s', a7) — Qi(s, a)}

Example: Multi-Pacman

Pacmans must catch the ghost

e Actions: move up, down, left, right

e States: (P1, P2, G) = locations (red dot)
of pacmans and ghost

e Ghost moves randomly

e Reward to both pacmans:
+1if ghost is caught, else 0 (y = 0.8)

Example: Multi-Pacman - 10x10 Grid, 2 Agents, 1 Ghost

S~ -—-- Alpha —— Independent Q
,~.§\,_ -——- Epsilon JAL-OM
4000 SN —— Single-agent Q
e 22.5 - Multi-agent limit
\\\ Tl 17 - Single-agent limit
3000 . e
a o T
g . el
0 ~o T ———
g N
= 2000 e
1000
\i\/\"\/\/\/\m)i — '—‘
0 -~
0 500 1000 1500 2000 2500 3000
Episodes
Video: learned JAL policies

©
()]
Parameters

©
i

0.2

0.0

21

Example: Level-Based Foraging

Robots must collect items in minimal time

e Actions:
- move up, down, left, right
- try to load item
e Robots can load item if positioned next @
to item and sum of robots’ levels > @
item level
e Reward to robot i:
- +1if involved in successful loading

- —1if trying to move outside grid
- 0 otherwise

22

Example: Level-Based Foraging - 5x5 Grid, 2 Agents, 1 Item

500 1.0
—— Independent Q
JAL-OM
----- Optimal policy
400 -—- alpha, epsilon [0.8
300 0.6 @
o) g
17)‘ (]
° €
o
£ &
= 200 0.4
100 T 02
0 0.0
0 20 40 60 80 100 120 140 160 180

Episode 23

Learning in Mixed Groups

Standard mode of operation is self-play: all agents use same algorithm
Bonus question: how do algorithms perform in mixed groups?

Tested 5 algorithms in mixed learning groups:
e Nash-Q: game-theoretic RL

e JAL and CJAL: opponent modelling RL

e WOLF-PHC (Bowling and Veloso, 2002)

e Regret Matching (Hart and Mas-Colell, 2001)

24

Learning in Mixed Groups

Test criteria:
e Convergence rate e Tested in 78 distinct, strictly ordinal

. 2 %2 8.
e Final expected rewards x 2 repeated games, eg

e Social welfare/fairness 12| 2,4

e Solution rates: 41133
e Nash equilibrium (NE)
e Pareto-optimality (PO) e Also tested in 500 random, strictly
e Welfare-optimality (WO) ordinal 2 x 2 x 2 (3 agents)

e Fairness-optimality (FO) repeated games

25

Learning in Mixed Groups — No Clear Winner

100%

95%

90%

85%

80%

75%

70% [

E

——JAL

3 —*— CJAL
—*— WoLF-PHC
4 — RegMat
B —*— Nash-Q

Conv. Exp. reward NE PO WO FO

100% is highest possible

No clear winner!

See (Albrecht and
Ramamoorthy, 2012) for
details

26

Reading (Optional)

e Useful summary: M. Bowling, M. Veloso (2000). An analysis of stochastic game
theory for multiagent reinforcement learning. CMU-CS-00-165

e Survey on opponent modelling:
S. Albrecht, P. Stone (2018). Autonomous agents modelling other agents: A
comprehensive survey and open problems. Artificial Intelligence, 258:66-95
https://arxiv.org/abs/1709.08071

e Tutorial with more algorithms and recent developments:
S. Albrecht, P. Stone (2017). Multiagent Learning: Foundations and Recent Trends
http://www.cs.utexas.edu/~larg/ijcail7_tutorial

27

https://arxiv.org/abs/1709.08071
http://www.cs.utexas.edu/~larg/ijcai17_tutorial

References i

References

S. Albrecht and S. Ramamoorthy. Comparative evaluation of MAL algorithms in a diverse set
of ad hoc team problems. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, pages 349-356, 2012,

M. Bowling and M. Veloso. Multiagent learning using a variable learning rate. Artificial
Intelligence, 136(2):215-250, 2002.

A. Greenwald and K. Hall. Correlated Q-learning. In Proceedings of the 20th International
Conference on Machine Learning, pages 242-249, 2003.

S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated equilibrium.
Economic Essays: A Festschrift for Werner Hildenbrand, pages 181-200, 2001.

28

References ii

J. Hu and M. Wellman. Nash Q-learning for general-sum stochastic games. Journal of
Machine Learning Research, 4:1039-1069, 2003.

M. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the 11th International Conference on Machine Learning, pages 157-163, 1994.

29

	References

