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INTRODUCTION

• Key for effective interaction in many multiagent systems is
to hypothesise behaviour of other agents

• Question: given history H and hypothesis π∗j for behaviour
of agent j, does j really behave according to π∗j ?

⇒ No universal theory to contemplate question

• If answer is no, can hypothesise alternative behaviour or
resort to default strategy (e.g. maximin)
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ati is action taken by agent i at time t

π∗2 is hypothesised action probabilities for agent 2

⇒ Does agent 2 really behave according to π∗2?

BEHAVIOURAL HYPOTHESIS TESTING

• Observe atj = (a0j , ..., a
t−1
j )

Sample âtj = (â0j , ..., â
t−1
j ) using π∗j

Question: atj and âtj generated from same behaviour (π∗j )?

• Decide question as frequentist hypothesis test
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)
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• Test statistic T based on score functions zk
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τ
j )

Tτ (ãτj , â
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j ãt−2,3
j ... ãt−2,N
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j ãt−1,2
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j ... ãt−1,N

j

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

at
j ât
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j ãt,3
j ... ãt,N
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EXPERIMENTS

• Three score functions:
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∗
j ) =

1

t

t−1∑
τ=0

π∗j (H
τ
i )[a

τ
j ]

maxaj∈Aj π
∗
j (H

τ
i )[aj ]

z2(atj , π
∗
j ) =

1

t

t−1∑
τ=0

1−Eaj∼π∗
j (H

τ
i )

∣∣π∗j (Hτ
i )[a

τ
j ]−π∗j (Hτ

i )[aj ]
∣∣

z3(atj , π
∗
j ) =

∑
aj∈Aj

min

[
1

t

t−1∑
τ=0

[aτj = aj ]1,
1

t

t−1∑
τ=0

π∗j (H
τ
i )[aj ]

]

• Four classes of behaviours:

- Random behaviours

- LFT, CDT, CNN (Albrecht et al., 2015)
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(a) πi, π j same class
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(b) πi random behaviour

/
%
&'('/

%

/
%
&'&'/

%

)*+

,-+

,..

Average accuracy with behaviour classes LFT, CDT, CNN
for N = 50. Results shown for [z1, z2, z3] test statistic.
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Average accuracy with random behaviours after 10000 time steps, for |Aj | = 2, 10, 20 and
N = 50. X-axis shows score functions zk used in test statistic.
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(a) |Aj | = 2
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(b) |Aj | = 10
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(c) |Aj | = 20

Average p-values with random behaviours, for N = 50 and π∗j 6= πj (i.e. hypothesis wrong).
Legend shows score functions zk used in test statistic.
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(a) N = 10
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(b) N = 50
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(c) N = 100

Figure 7: Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours
with |Aj | = 10 and N = 10, 50, 100. Using score function z1 in test statistic.
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(a) N = 10
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(b) N = 50
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(c) N = 100

Figure 8: Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours
with |Aj | = 10 and N = 10, 50, 100. Using score functions z1, z2, z3 in test statistic.

entire tree that defines ⇡j . However, if our hypothesis ⇡⇤
j

differs from ⇡j only in the unseen aspects of ⇡j , then there is
no way for our algorithm to differentiate the two. Hence the
asymmetry in accuracy for ⇡⇤

j = ⇡j and ⇡⇤
j 6= ⇡j . Note that

this problem did not occur in random behaviours because,
there, all aspects are eventually visible.

Following this observation, we repeated the same experi-
ments but restricted ⇧i to random behaviours, with the goal
of exploring ⇡⇤

j more thoroughly. As shown in Figure 11,
this led to significant improvements in accuracy, especially
for the CDT class. Nonetheless, choosing actions purely ran-
domly may not be a sufficient probing strategy, hence the
accuracy for CNN was still relatively low. For CNN, this
was further complicated by the fact that two neural networks
⇡j ,⇡

0
j may formally be different (⇡j 6= ⇡0

j) but have essen-
tially the same action probabilities (with extremely small
differences). Hence, in such cases, we would require much
more evidence to distinguish the behaviours.

6 CONCLUSION

We hold the view that if an intelligent agent is to interact ef-
fectively with other agents whose behaviours are unknown,
it will have to hypothesise what these agents might be doing
and contemplate the truth of its hypotheses, such that appro-
priate measures can be taken if they are deemed false. In this
spirit, we presented a novel algorithm which decides this

question in the form of a frequentist hypothesis test. The
algorithm can incorporate multiple statistical criteria into
the test statistic and learns the test distribution during the in-
teraction process, with asymptotic correctness guarantees.
We presented results from a comprehensive set of experi-
ments, showing that our algorithm achieved high accuracy
and scalability at low computational costs.

There are several directions for future work: To bring some
structure into the space of score functions, we introduced
the concepts of consistency and perfection as minimal and
ideal properties. However, more research is needed to un-
derstand precisely what properties a useful score function
should satisfy, and whether the concept of perfection is fea-
sible or even necessary in the general case. Furthermore,
we used uniform weights to combine the computed scores
into a test statistic, and we also experimented with alterna-
tive weighting schemes to show that the weighting can have
a substantial effect on convergence rates. However, further
research is required to understand the effect of weights on
decision quality and convergence.

Finally, in this work, we assumed that the behaviour of the
other agent (j) could be described as a function of the infor-
mation available to our agent (i). An important extension
would be to also account for information that cannot be deter-
ministically derived from our observations, especially in the
context of robotics where observations are often described
as random variables.

Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for
random behaviours with |Aj | = 10, using score function z1.
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