Are You Doing What I Think You Are Doing?

Criticising Uncertain Agent Models

Stefano V. Albrecht s.v.albrecht@sms.ed.ac.uk

Subramanian Ramamoorthy s.ramamoorthy@ed.ac.uk

INTRODUCTION

- Key for effective interaction in many multiagent systems is to *hypothesise* behaviour of other agents
- Question: given history H and hypothesis π_j^* for behaviour of agent j, does j really behave according to π_j^* ?
 - \Rightarrow No universal theory to contemplate question
- If answer is no, can hypothesise alternative behaviour or resort to default strategy (e.g. maximin)

t	(a_1^t, a_2^t)	π_2^*
1	(1, 2)	$\langle .3, .1, .6 \rangle$
2	(3,1)	$\langle .2, .3, .5 \rangle$
3	(2, 3)	$\langle .7, .1, .2 \rangle$
4	(2,3)	(.0, .4, .6)
5	(1, 2)	$\langle .4, .2, .4 \rangle$

 a_i^t is action taken by agent *i* at time *t*

 π_2^* is hypothesised action probabilities for agent 2

 \Rightarrow Does agent 2 really behave according to π_2^* ?

BEHAVIOURAL HYPOTHESIS TESTING

Observe a^t_j = (a⁰_j, ..., a^{t-1}_j)
Sample â^t_j = (â⁰_j, ..., â^{t-1}_j) using π^{*}_j
Question: a^t_j and â^t_j generated from same behaviour (π^{*}_j)?

• Decide question as frequentist hypothesis test

 $p = P\left(|T(\tilde{\mathbf{a}}_j^t, \hat{\mathbf{a}}_j^t)| \ge |T(\mathbf{a}_j^t, \hat{\mathbf{a}}_j^t)|\right)$

where $\tilde{\mathbf{a}}_{j}^{t} \sim \delta^{t}(\pi_{j}^{*}) = (\pi_{j}^{*}(H_{i}^{0}), ..., \pi_{j}^{*}(H_{i}^{t-1}))$

• Test statistic T based on score functions z_k

$$T(\tilde{\mathbf{a}}_{j}^{t}, \hat{\mathbf{a}}_{j}^{t}) = \frac{1}{t} \sum_{\tau=1}^{t} T_{\tau}(\tilde{\mathbf{a}}_{j}^{\tau}, \hat{\mathbf{a}}_{j}^{\tau})$$
$$T_{\tau}(\tilde{\mathbf{a}}_{j}^{\tau}, \hat{\mathbf{a}}_{j}^{\tau}) = \sum_{k=1}^{K} w_{k} \left(z_{k}(\tilde{\mathbf{a}}_{j}^{\tau}, \pi_{j}^{*}) - z_{k}(\hat{\mathbf{a}}_{j}^{\tau}, \pi_{j}^{*}) \right)$$

EXPERIMENTS

• Three score functions:

$$z_{1}(\mathbf{a}_{j}^{t}, \pi_{j}^{*}) = \frac{1}{t} \sum_{\tau=0}^{t-1} \frac{\pi_{j}^{*}(H_{i}^{\tau})[a_{j}^{\tau}]}{\max_{a_{j} \in A_{j}} \pi_{j}^{*}(H_{i}^{\tau})[a_{j}]}$$
$$z_{2}(\mathbf{a}_{j}^{t}, \pi_{j}^{*}) = \frac{1}{t} \sum_{\tau=0}^{t-1} 1 - \mathbb{E}_{\pi_{j}^{*}(H_{i}^{\tau})}^{a_{j} \sim} \left|\pi_{j}^{*}(H_{i}^{\tau})[a_{j}^{\tau}] - \pi_{j}^{*}(H_{i}^{\tau})[a_{j}]\right|$$

$$z_3(\mathbf{a}_j^t, \pi_j^*) = \sum_{a_j \in A_j} \min\left[\frac{1}{t} \sum_{\tau=0}^{t-1} [a_j^\tau = a_j]_1, \frac{1}{t} \sum_{\tau=0}^{t-1} \pi_j^*(H_i^\tau)[a_j]\right]$$

- Four classes of behaviours:
 - Random behaviours
 - LFT, CDT, CNN (Albrecht et al., 2015)

Average *p*-values with random behaviours, for N = 50 and $\pi_j^* \neq \pi_j$ (i.e. hypothesis wrong). Legend shows score functions z_k used in test statistic.

Average accuracy with behaviour classes LFT, CDT, CNN for N = 50. Results shown for $[z_1, z_2, z_3]$ test statistic.

Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours with $|A_j| = 10$, using score function z_1 .

References:

Albrecht, S., Crandall, J., Ramamoorthy, S. (2015). An empirical study on the practical impact of prior beliefs over policy types. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 1988–1994.

See paper for more details: http://svalbrecht.de/docs/uai15.pdf

