Exploiting Causality for Efficient Monitoring in DBNs

- 1. Belief state b^t represented as product of K belief factors b^t_k $\frac{t}{k}$, such that $b^t(s) = \prod_{k=1}^K$ $\frac{K}{k=1}$ b_k^t $\frac{t}{k}(s).$ Each belief factor b_k^t k associated with cluster C_k of state variables.
- 2. Transition step b_k^t $\begin{array}{c} t \ k \end{array} \longrightarrow$ \hat{b} \hat{b}_k^{t+1} k^{t+1} performed for all clusters C_k which include active variables in Δ^{a^t} , or to which there is a causal path from an active variable.
- 3. Observation step \hat{b} \hat{b}_k^{t+1} $k^{t+1} \rightarrow b_k^{t+1}$ k^{t+1} performed for all clusters C_k which depend on observation variables, using only observation clusters C $\hat{\bigcap}$ l_l relevant for C_k .

Stefano V. Albrecht^{*}, Subramanian Ramamoorthy

INTRODUCTION

- Dynamic Bayesian network (DBN) useful to model actions in decision process with partial observability
- Agent maintains belief state b^t which is a probability distribution over state space of process
- Monitoring (filtering) task: update belief state b^t to b^{t+1} based on stochastic observation o^{t+1}
	- \Rightarrow Difficult task in complex systems
- Existing methods do not exploit causal structure ⇒ Idea: exploit *causality* to accelerate monitoring

Robot arm with absolute joint orientations θ_i

 θ_3

PASSIVITY-BASED MONITORING

- Each action a modelled as DBN Δ^a
- State variables in Δ^a are either active or passive

Passive variable x_i may only change value if any of its parents in Δ^a change value (else *active*)

• Can be determined from Δ^a (edges and CPD)

Active and Passive Variables: Passivity-based Monitoring (PM):

 θ_2

 θ_1

• Accuracy and timing in synthetic processes of 4 sizes: - S: n=10, m=3 *(n = # state vars, m = # obs. vars.)*

- M: n=20, m=6
- $-L: n=30, m=9$
- $-L: n=40, m=12$
- All state and observation variables binary
- Processes generated using Gaussian mixture models
- Three clustering methods: $\langle pc \rangle$, $\langle modis \rangle$, $\langle moral \rangle$
- Benchmark monitoring methods:
	- Particle filtering (PF) (Gordon et al., 1993)
	- Boyen-Koller (BK) (Boyen and Koller, 1998)
- $X\%$ passivity: $X\%$ of non-target variables were passive

EXPERIMENT: SYNTHETIC PROCESSES

EXPERIMENT: MULTI-ROBOT WAREHOUSE

- Simulation of complex multi-robot warehouse system
- Actions: move forward/backward, turn left/right,

load/unload inventory pod, do nothing

- Sensors: which pod loaded (if any), direction facing
- Move/turn operations and direction sensor **stochastic** (i.e. small chance of incorrect result)
- Two control modes: centralised and autonomous
- Robot tasks generated by external scheduler Initial state of warehouse simulation

References:

Gordon, N., Salmond, D., Smith, A. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In Radar and Signal Processing, IEE Proceedings F, Vol. 140, pp. 107–113.

Boyen, X., Koller, D. (1998). Tractable inference for complex stochastic processes. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 33–42.

See full article for more details: http://arxiv.org/abs/1401.7941

