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e Dynamic Bayesian network (DBN) useful to model
actions 1n decision process with partial observability

e Agent maintains belief state b* which is a probability
distribution over state space of process

e Monitoring (filtering) task: update belief state b® to
b+ based on stochastic observation o1

= Difficult task in complex systems

e Existing methods do not exploit causal structure

Robot arm with absolute joint orientations 6;

= Idea: exploit causality to accelerate monitoring

Active and Passive Variables: Passivity-based Monitoring (PM):

e Each action a modelled as DBN A 1. Belief state b represented as product of K belief factors b, such that bt (s) = [],-_, b’.(s).

Each belief factor bj,f_c associated with cluster C';. of state variables.
e State variables in A“ are either active or passive

2. Transition step b}, — 13;;“ performed for all clusters C;, which include active variables in A
or to which there 1s a causal path from an active variable.

Passive variable x; may only change value if any of its

parents in A“ change value (else active)

3. Observation step b — bl performed for all clusters C, which depend on observation
P O kP

e Can be determined from A (edges and CPD) variables, using only observation clusters C’l relevant for C}.
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e Simulation of complex multi-robot warehouse system 60l Centralised
. : 11 15 19 113 - Autonomous
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o Move/turn operat10n§ and direction sensor stochastic O
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e Two control modes: centralised and autonomous W1 W2
e Robot tasks generated by external scheduler Initial state of warehouse simulation
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