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INTRODUCTION

• Dynamic Bayesian network (DBN) useful to model
actions in decision process with partial observability

• Agent maintains belief state bt which is a probability
distribution over state space of process

• Monitoring (filtering) task: update belief state bt to
bt+1 based on stochastic observation ot+1

⇒ Difficult task in complex systems

• Existing methods do not exploit causal structure
⇒ Idea: exploit causality to accelerate monitoring
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PASSIVITY-BASED MONITORING

Active and Passive Variables: Passivity-based Monitoring (PM):

• Each action a modelled as DBN ∆a

• State variables in ∆a are either active or passive

Passive variable xi may only change value if any of its
parents in ∆a change value (else active)

• Can be determined from ∆a (edges and CPD)

1. Belief state bt represented as product of K belief factors btk, such that bt(s) =
∏K

k=1 b
t
k(s).

Each belief factor btk associated with cluster Ck of state variables.

2. Transition step btk → b̂t+1
k performed for all clusters Ck which include active variables in ∆at

,
or to which there is a causal path from an active variable.

3. Observation step b̂t+1
k → bt+1

k performed for all clusters Ck which depend on observation
variables, using only observation clusters Ĉl relevant for Ck.

EXPERIMENT: SYNTHETIC PROCESSES

• Accuracy and timing in synthetic processes of 4 sizes:
- S: n=10, m=3 (n = # state vars, m = # obs. vars.)

- M: n=20, m=6
- L: n=30, m=9
- XL: n=40, m=12

• All state and observation variables binary

• Processes generated using Gaussian mixture models

• Three clustering methods: 〈pc〉, 〈modis〉, 〈moral〉

• Benchmark monitoring methods:
- Particle filtering (PF) (Gordon et al., 1993)
- Boyen-Koller (BK) (Boyen and Koller, 1998)

• X% passivity: X% of non-target variables were passive
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EXPERIMENT: MULTI-ROBOT WAREHOUSE

• Simulation of complex multi-robot warehouse system

• Actions: move forward/backward, turn left/right,
load/unload inventory pod, do nothing

• Sensors: which pod loaded (if any), direction facing

• Move/turn operations and direction sensor stochastic
(i.e. small chance of incorrect result)

• Two control modes: centralised and autonomous

• Robot tasks generated by external scheduler Initial state of warehouse simulation BK PM PF
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