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Proof of Theorem 1

Theorem 1 (restated from [1]). Let Γ be a SBG with a pure type distribution ∆. If HBA uses a
product posterior and if the prior probabilities Pj are positive (∀θ∗j ∈ Θ∗j : Pj(θ

∗
j ) > 0), then:

for any ε > 0, there is a time t from which (τ ≥ t)

PPr(H
τ,H∞)(1− ε) ≤ P∆(Hτ,H∞) ≤ (1 + ε)PPr(H

τ,H∞) (1)

for all H∞ with P∆(Hτ,H∞) > 0.

Proof. Kalai and Lehrer [2] studied a model which can be equivalently described as a single-state
SBG (i.e. |S| = 1) with a pure type distribution and product posterior. They showed that, if the
player’s assessment of future play is absolutely continuous with respect to the true probabilities of
future play (i.e. any event that has true positive probability is assigned positive probability by the
player), then (1) must hold. In our case, absolute continuity always holds by Assumption 5 and the
fact that the prior probabilities Pj are positive, as well as the fact that the type distribution is pure
(from which we can infer that the true types always have positive posterior probability).

In this proof, we seek to extend the convergence result of Kalai and Lehrer (henceforth [2]) to
multi-state SBGs with pure type distributions. Our strategy is to translate a SBG Γ into a modified
SBG Γ̂ which is equivalent to Γ in the sense that the players behave identically, and which is
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compatible to the model used in [2] in the sense that the informational assumptions of [2] ignore
the differences. We achieve this by introducing a new player nature, denoted ξ, which emulates the
transitions of Γ in Γ̂.

Given a SBG Γ = (S, s0, S̄, N,Ai,Θi, ui, πi, T,∆), we define the modified SBG Γ̂ as follows:
Firstly, Γ̂ has only one state, which can be arbitrary since it has no effect. The players in Γ̂ are
N̂ = N ∪ {ξ} where i ∈ N have the same actions and types as in Γ (i.e. Ai and Θi), and where we
define the actions and types of ξ to be Aξ = Θξ = S (i.e. nature’s actions and types correspond to
the states of Γ). The payoffs of ξ are always zero and the strategy of ξ at time t is defined as

πtξ(H
τ , aξ, θξ) =


0 τ = t, aξ 6≡ θξ
1 τ = t, aξ ≡ θξ
T (aτ−1

ξ , (aτ−1
i )i∈N , aξ) τ > t

where Hτ is any history of length τ ≥ t. (Hτ allows the players i ∈ N to use πtξ for future
predictions about ξ’s actions. This will be necessary to establish equivalence of Γ̂ and Γ.)

The purpose of ξ is to emulate the state transitions of Γ. Therefore, the modified strategies π̂i
and payoffs ûi of i ∈ N are now defined with respect to the actions and types (since the current
type of ξ determines its next action) of ξ. Formally, π̂i(Ht, ai, θi) = πi(H̄

t, ai, θi) where

H̄t = (θ0
ξ , (a

0
i )i∈N , θ

1
ξ , (a

1
i )i∈N , ..., θ

t
ξ)

and ûi(s, at, θti) = ui(θ
t
ξ, (a

t
j)j∈N , θ

t
i), where s is the only state of Γ̂ and at ∈ ×i∈N̂Ai.

Finally, Γ̂ uses two type distributions, ∆ and ∆ξ , where ∆ is the type distribution of Γ and ∆ξ is
defined as ∆ξ(H

t, θξ) = T (at−1
ξ , (at−1

i )i∈N , θξ). If s0 is the initial state of Γ, then ∆ξ(H
0, θξ) = 1

for θξ ≡ s0.
The modified SBG Γ̂ proceeds as the original SBG Γ, except for the following changes: (a) ∆ is

used to sample the types for i ∈ N (as usual) while ∆ξ is used to sample the types for ξ; (b) Each
player is informed about its own type and the type of ξ. This completes the definition of Γ̂.

The modified SBG Γ̂ is equivalent to the original SBG Γ in the sense that the players i ∈ N
have identical behaviour in both SBGs. Since the players always know the type of ξ, they also know
the next action of ξ, which corresponds to knowing the current state of the game. Furthermore, note
that the strategy of ξ uses two time indices, t and τ , which allow it to distinguish between the current
time (τ = t) and a future time (τ > t). This means that πtξ can be used to compute expected payoffs
in Γ̂ in the same way as T is used to compute expected payoffs in Γ. In other words, the formulas
(2) and (3) can be modified in a straightforward manner by replacing the original components of Γ

with the modified components of Γ̂, yielding the same results. Finally, since Γ̂ uses the same type
distribution as Γ to sample types for i ∈ N , there are no differences in their payoffs and strategies.

To complete the proof, we note that (a) and (b) are the only procedural differences between the
modified SBG and the model used in [2]. However, since we specify that the players always know
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the type of ξ, there is no need to learn the type distribution ∆ξ, hence (a) and (b) have no effect in
[2]. The important point is that [2] assume a model in which the players only interact with other
players, but not with an environment. Since we eliminated the environment by replacing it with a
player ξ, this is precisely what happens in the modified SBG. Therefore, the convergence result of
[2] carries over to multi-state SBGs with pure type distributions.

Corrigendum

The original paper published in the Proceedings of the 30th Conference on Uncertainty in Artificial
Intelligence contained an incorrect Theorem 1. The theorem claimed that, under a pure type distri-
bution and using a product posterior, HBA would eventually learn the true type distribution of the
game. In fact, the proof was exactly the same as the one given in this appendix. However, the er-
ror was in the implicit assumption that the convergence result of Kalai and Lehrer [2] would imply
knowledge of the true type distribution. Unfortunately, there is a subtle but important asymmetry
between making correct future predictions and knowing the true type distribution: while the latter
implies the former, examples can be created to show that the reverse is not generally true. Therefore,
while HBA is guaranteed to make correct future predictions after some time, it is not guaranteed to
learn the type distribution of the game. This has now been corrected.
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