Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
AAMASSubramanian-Ramamoorthy
2013
Stefano V. Albrecht, Subramanian Ramamoorthy
A Game-Theoretic Model and Best-Response Learning Method for Ad Hoc Coordination in Multiagent Systems
International Conference on Autonomous Agents and Multiagent Systems, 2013
Abstract | BibTex | arXiv (full technical report) | Extended Abstract
AAMASad-hoc-teamworkagent-modelling
Abstract:
The ad hoc coordination problem is to design an autonomous agent which is able to achieve optimal flexibility and efficiency in a multiagent system with no mechanisms for prior coordination. We conceptualise this problem formally using a game-theoretic model, called the stochastic Bayesian game, in which the behaviour of a player is determined by its private information, or type. Based on this model, we derive a solution, called Harsanyi-Bellman Ad Hoc Coordination (HBA), which utilises the concept of Bayesian Nash equilibrium in a planning procedure to find optimal actions in the sense of Bellman optimal control. We evaluate HBA in a multiagent logistics domain called level-based foraging, showing that it achieves higher flexibility and efficiency than several alternative algorithms. We also report on a human-machine experiment at a public science exhibition in which the human participants played repeated Prisoner's Dilemma and Rock-Paper-Scissors against HBA and alternative algorithms, showing that HBA achieves equal efficiency and a significantly higher welfare and winning rate.
@inproceedings{ albrecht2013game,
title = {A Game-Theoretic Model and Best-Response Learning Method for Ad Hoc Coordination in Multiagent Systems},
author = {Stefano V. Albrecht and Subramanian Ramamoorthy},
booktitle = {Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems},
address = {St. Paul, Minnesota, USA},
month = {May},
year = {2013}
}
2012
Stefano V. Albrecht, Subramanian Ramamoorthy
Comparative Evaluation of Multiagent Learning Algorithms in a Diverse Set of Ad Hoc Team Problems
International Conference on Autonomous Agents and Multiagent Systems, 2012
Abstract | BibTex | arXiv
AAMASmulti-agent-rlad-hoc-teamwork
Abstract:
This paper is concerned with evaluating different multiagent learning (MAL) algorithms in problems where individual agents may be heterogenous, in the sense of utilizing different learning strategies, without the opportunity for prior agreements or information regarding coordination. Such a situation arises in ad hoc team problems, a model of many practical multiagent systems applications. Prior work in multiagent learning has often been focussed on homogeneous groups of agents, meaning that all agents were identical and a priori aware of this fact. Also, those algorithms that are specifically designed for ad hoc team problems are typically evaluated in teams of agents with fixed behaviours, as opposed to agents which are adapting their behaviours. In this work, we empirically evaluate five MAL algorithms, representing major approaches to multiagent learning but originally developed with the homogeneous setting in mind, to understand their behaviour in a set of ad hoc team problems. All teams consist of agents which are continuously adapting their behaviours. The algorithms are evaluated with respect to a comprehensive characterisation of repeated matrix games, using performance criteria that include considerations such as attainment of equilibrium, social welfare and fairness. Our main conclusion is that there is no clear winner. However, the comparative evaluation also highlights the relative strengths of different algorithms with respect to the type of performance criteria, e.g., social welfare vs. attainment of equilibrium.
@inproceedings{ albrecht2012comparative,
title = {Comparative Evaluation of {MAL} Algorithms in a Diverse Set of Ad Hoc Team Problems},
author = {Stefano V. Albrecht and Subramanian Ramamoorthy},
booktitle = {Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems},
pages = {349--356},
year = {2012}
}