Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Mihai-DobreIROS
2022
Morris Antonello, Mihai Dobre, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy
Flash: Fast and Light Motion Prediction for Autonomous Driving with Bayesian Inverse Planning and Learned Motion Profiles
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022
Abstract | BibTex | arXiv
IROSautonomous-drivingstate-estimation
Abstract:
Motion prediction of road users in traffic scenes is critical for autonomous driving systems that must take safe and robust decisions in complex dynamic environments. We present a novel motion prediction system for autonomous driving. Our system is based on the Bayesian inverse planning framework, which efficiently orchestrates map-based goal extraction, a classical control-based trajectory generator and an ensemble of light-weight neural networks specialised in motion profile prediction. In contrast to many alternative methods, this modularity helps isolate performance factors and better interpret results, without compromising performance. This system addresses multiple aspects of interest, namely multi-modality, motion profile uncertainty and trajectory physical feasibility. We report on several experiments with the popular highway dataset NGSIM, demonstrating state-of-the-art performance in terms of trajectory error. We also perform a detailed analysis of our system's components, along with experiments that stratify the data based on behaviours, such as change lane versus follow lane, to provide insights into the challenges in this domain. Finally, we present a qualitative analysis to show other benefits of our approach, such as the ability to interpret the outputs.
@inproceedings{antonello2022flash,
title={Flash: Fast and Light Motion Prediction for Autonomous Driving with {Bayesian} Inverse Planning and Learned Motion Profiles},
author={Morris Antonello, Mihai Dobre, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy},
booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2022}
}
2021
Josiah P. Hanna, Arrasy Rahman, Elliot Fosong, Francisco Eiras, Mihai Dobre, John Redford, Subramanian Ramamoorthy, Stefano V. Albrecht
Interpretable Goal Recognition in the Presence of Occluded Factors for Autonomous Vehicles
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021
Abstract | BibTex | arXiv
IROSautonomous-drivinggoal-recognitionexplainable-ai
Abstract:
Recognising the goals or intentions of observed vehicles is a key step towards predicting the long-term future behaviour of other agents in an autonomous driving scenario. When there are unseen obstacles or occluded vehicles in a scenario, goal recognition may be confounded by the effects of these unseen entities on the behaviour of observed vehicles. Existing prediction algorithms that assume rational behaviour with respect to inferred goals may fail to make accurate long-horizon predictions because they ignore the possibility that the behaviour is influenced by such unseen entities. We introduce the Goal and Occluded Factor Inference (GOFI) algorithm which bases inference on inverse-planning to jointly infer a probabilistic belief over goals and potential occluded factors. We then show how these beliefs can be integrated into Monte Carlo Tree Search (MCTS). We demonstrate that jointly inferring goals and occluded factors leads to more accurate beliefs with respect to the true world state and allows an agent to safely navigate several scenarios where other baselines take unsafe actions leading to collisions.
@inproceedings{hanna2021interpretable,
title={Interpretable Goal Recognition in the Presence of Occluded Factors for Autonomous Vehicles},
author={Josiah P. Hanna and Arrasy Rahman and Elliot Fosong and Francisco Eiras and Mihai Dobre and John Redford and Subramanian Ramamoorthy and Stefano V. Albrecht},
booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2021}
}