Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Shangmin-GuoNeurIPS
2023
Samuel Garcin, James Doran, Shangmin Guo, Christopher G. Lucas, Stefano V. Albrecht
How the level sampling process impacts zero-shot generalisation in deep reinforcement learning
NeurIPS Workshop on Agent Learning in Open-Endedness, 2023
Abstract | BibTex | arXiv
NeurIPSdeep-rl
Abstract:
A key limitation preventing the wider adoption of autonomous agents trained via deep reinforcement learning (RL) is their limited ability to generalise to new environments, even when these share similar characteristics with environments encountered during training. In this work, we investigate how a non-uniform sampling strategy of individual environment instances, or levels, affects the zero-shot generalisation (ZSG) ability of RL agents, considering two failure modes: overfitting and over-generalisation. As a first step, we measure the mutual information (MI) between the agent's internal representation and the set of training levels, which we find to be well-correlated to instance overfitting. In contrast to uniform sampling, adaptive sampling strategies prioritising levels based on their value loss are more effective at maintaining lower MI, which provides a novel theoretical justification for this class of techniques. We then turn our attention to unsupervised environment design (UED) methods, which adaptively generate new training levels and minimise MI more effectively than methods sampling from a fixed set. However, we find UED methods significantly shift the training distribution, resulting in over-generalisation and worse ZSG performance over the distribution of interest. To prevent both instance overfitting and over-generalisation, we introduce self-supervised environment design (SSED). SSED generates levels using a variational autoencoder, effectively reducing MI while minimising the shift with the distribution of interest, and leads to statistically significant improvements in ZSG over fixed-set level sampling strategies and UED methods.
@inproceedings{garcin2023level,
title={How the level sampling process impacts zero-shot generalisation in deep reinforcement learning},
author={Samuel Garcin and James Doran and Shangmin Guo and Christopher G. Lucas and Stefano V. Albrecht},
booktitle={NeurIPS Workshop on Agent Learning in Open-Endedness},
year={2023}
}
2022
Shangmin Guo, Yi Ren, Stefano V. Albrecht, Kenny Smith
Sample Relationships through the Lens of Learning Dynamics with Label Information
NeurIPS Workshop on Interpolation and Beyond, 2022
Abstract | BibTex | arXiv
NeurIPSiterated-learningdeep-learningtransfer-learning
Abstract:
Although much research has been done on proposing new models or loss functions to improve the generalisation of artificial neural networks (ANNs), less attention has been directed to the data, which is also an important factor for training ANNs. In this work, we start from approximating the interaction between two samples, i.e. how learning one sample would modify the model's prediction on the other sample. Through analysing the terms involved in weight updates in supervised learning, we find that the signs of labels influence the interactions between samples. Therefore, we propose the labelled pseudo Neural Tangent Kernel (lpNTK) which takes label information into consideration when measuring the interactions between samples. We first prove that lpNTK would asymptotically converge to the well-known empirical Neural Tangent Kernel in terms of the Frobenius norm under certain assumptions. Secondly, we illustrate how lpNTK helps to understand learning phenomena identified in previous work, specifically the learning difficulty of samples and forgetting events during learning. Moreover, we also show that lpNTK can help to improve the generalisation performance of ANNs in image classification tasks, compared with the original whole training sets.
@inproceedings{guo2022relationship,
title={Sample Relationships through the Lens of Learning Dynamics with Label Information},
author={Shangmin Guo and Yi Ren and Stefano V. Albrecht and Kenny Smith},
booktitle={NeurIPS 2022 Workshop on Interpolation and Beyond},
year={2022}
}