Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Subramanian-RamamoorthyAAAI
2015
Stefano V. Albrecht, Jacob W. Crandall, Subramanian Ramamoorthy
An Empirical Study on the Practical Impact of Prior Beliefs over Policy Types
AAAI Conference on Artificial Intelligence, 2015
Abstract | BibTex | arXiv | Appendix
AAAIagent-modellingad-hoc-teamwork
Abstract:
Many multiagent applications require an agent to learn quickly how to interact with previously unknown other agents. To address this problem, researchers have studied learning algorithms which compute posterior beliefs over a hypothesised set of policies, based on the observed actions of the other agents. The posterior belief is complemented by the prior belief, which specifies the subjective likelihood of policies before any actions are observed. In this paper, we present the first comprehensive empirical study on the practical impact of prior beliefs over policies in repeated interactions. We show that prior beliefs can have a significant impact on the long-term performance of such methods, and that the magnitude of the impact depends on the depth of the planning horizon. Moreover, our results demonstrate that automatic methods can be used to compute prior beliefs with consistent performance effects. This indicates that prior beliefs could be eliminated as a manual parameter and instead be computed automatically.
@inproceedings{ albrecht2015empirical,
title = {An Empirical Study on the Practical Impact of Prior Beliefs over Policy Types},
author = {Stefano V. Albrecht and Jacob W. Crandall and Subramanian Ramamoorthy},
booktitle = {Proceedings of the 29th AAAI Conference on Artificial Intelligence},
pages = {1988--1994},
year = {2015}
}
Stefano V. Albrecht, Jacob W. Crandall, Subramanian Ramamoorthy
E-HBA: Using Action Policies for Expert Advice and Agent Typification
AAAI Workshop on Multiagent Interaction without Prior Coordination, 2015
Abstract | BibTex | arXiv | Appendix
AAAIagent-modellingad-hoc-teamwork
Abstract:
Past research has studied two approaches to utilise predefined policy sets in repeated interactions: as experts, to dictate our own actions, and as types, to characterise the behaviour of other agents. In this work, we bring these complementary views together in the form of a novel meta-algorithm, called Expert-HBA (E-HBA), which can be applied to any expert algorithm that considers the average (or total) payoff an expert has yielded in the past. E-HBA gradually mixes the past payoff with a predicted future payoff, which is computed using the type-based characterisation. We present results from a comprehensive set of repeated matrix games, comparing the performance of several well-known expert algorithms with and without the aid of E-HBA. Our results show that E-HBA has the potential to significantly improve the performance of expert algorithms.
@inproceedings{ albrecht2015ehba,
title = {{E-HBA}: Using Action Policies for Expert Advice and Agent Typification},
author = {Stefano V. Albrecht and Jacob W. Crandall and Subramanian Ramamoorthy},
booktitle = {AAAI Workshop on Multiagent Interaction without Prior Coordination},
address = {Austin, Texas, USA},
month = {January},
year = {2015}
}