Publications

For news about publications, follow us on X:  Follow @s_albrecht on X

Click on any author names or tags to filter publications.

All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning

Selected tags (click to remove):
deep-rlAAMAS

2023

Filippos Christianos, Georgios Papoudakis, Stefano V. Albrecht
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
AAMAS Workshop on Optimization and Learning in Multiagent Systems, 2023
Abstract | BibTex | arXiv
AAMASdeep-rlmulti-agent-rl

Adam Michalski, Filippos Christianos, Stefano V. Albrecht
SMAClite: A Lightweight Environment for Multi-Agent Reinforcement Learning
AAMAS Workshop on Multiagent Sequential Decision Making Under Uncertainty, 2023
Abstract | BibTex | arXiv | Code
AAMASdeep-rlmulti-agent-rl

Lukas Schäfer, Oliver Slumbers, Stephen McAleer, Yali Du, Stefano V. Albrecht, David Mguni
Ensemble Value Functions for Efficient Exploration in Multi-Agent Reinforcement Learning
AAMAS Workshop on Adaptive and Learning Agents, 2023
Abstract | BibTex | arXiv
AAMASmulti-agent-rldeep-rl

Callum Tilbury, Filippos Christianos, Stefano V. Albrecht
Revisiting the Gumbel-Softmax in MADDPG
AAMAS Workshop on Adaptive and Learning Agents, 2023
Abstract | BibTex | arXiv | Code
AAMASmulti-agent-rldeep-rl

Alain Andres, Lukas Schäfer, Esther Villar-Rodriguez, Stefano V. Albrecht, Javier Del Ser
Using Offline Data to Speed-up Reinforcement Learning in Procedurally Generated Environments
AAMAS Workshop on Adaptive and Learning Agents, 2023
Abstract | BibTex | arXiv
AAMASdeep-rl

2022

Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, Stefano V. Albrecht
Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated Exploration
International Conference on Autonomous Agents and Multi-Agent Systems, 2022
Abstract | BibTex | arXiv | Code
AAMASdeep-rlintrinsic-reward