Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Adam-Jelley
2024
Trevor McInroe, Adam Jelley, Stefano V. Albrecht, Amos Storkey
Planning to Go Out-of-Distribution in Offline-to-Online Reinforcement Learning
Reinforcement Learning Conference, 2024
Abstract | BibTex | arXiv
RLCdeep-rl
Abstract:
Offline pretraining with a static dataset followed by online fine-tuning (offline-to-online, or OtO) is a paradigm well matched to a real-world RL deployment process. In this scenario, we aim to find the best-performing policy within a limited budget of online interactions. Previous work in the OtO setting has focused on correcting for bias introduced by the policy-constraint mechanisms of offline RL algorithms. Such constraints keep the learned policy close to the behavior policy that collected the dataset, but we show this can unnecessarily limit policy performance if the behavior policy is far from optimal. Instead, we forgo constraints and frame OtO RL as an exploration problem that aims to maximize the benefit of online data-collection. We first study the major online RL exploration methods based on intrinsic rewards and UCB in the OtO setting, showing that intrinsic rewards add training instability through reward-function modification, and UCB methods are myopic and it is unclear which learned-component's ensemble to use for action selection. We then introduce an algorithm for planning to go out-of-distribution (PTGOOD) that avoids these issues. PTGOOD uses a non-myopic planning procedure that targets exploration in relatively high-reward regions of the state-action space unlikely to be visited by the behavior policy. By leveraging concepts from the Conditional Entropy Bottleneck, PTGOOD encourages data collected online to provide new information relevant to improving the final deployment policy without altering rewards. We show empirically in several continuous control tasks that PTGOOD significantly improves agent returns during online fine-tuning and avoids the suboptimal policy convergence that many of our baselines exhibit in several environments.
@inproceedings{mcinroe2024planning,
title={Planning to Go Out-of-Distribution in Offline-to-Online Reinforcement Learning},
author={Trevor McInroe and Adam Jelley and Stefano V. Albrecht and Amos Storkey},
booktitle={1st Reinforcement Learning Conference},
year={2024}
}
Dongge Han, Trevor McInroe, Adam Jelley, Stefano V. Albrecht, Peter Bell, Amos Storkey
LLM-Personalize: Aligning LLM Planners with Human Preferences via Reinforced Self-Training for Housekeeping Robots
arXiv:2404.14285, 2024
Abstract | BibTex | arXiv | Code | Website
generalisationstate-estimation
Abstract:
Large language models (LLMs) have shown significant potential for robotics applications, particularly task planning, by harnessing their language comprehension and text generation capabilities. However, in applications such as household robotics, a critical gap remains in the personalization of these models to individual user preferences. We introduce LLM-Personalize, a novel framework with an optimization pipeline designed to personalize LLM planners for household robotics. Our LLM-Personalize framework features an LLM planner that performs iterative planning in multi-room, partially-observable household scenarios, making use of a scene graph constructed with local observations. The generated plan consists of a sequence of high-level actions which are subsequently executed by a controller. Central to our approach is the optimization pipeline, which combines imitation learning and iterative self-training to personalize the LLM planner. In particular, the imitation learning phase performs initial LLM alignment from demonstrations, and bootstraps the model to facilitate effective iterative self-training, which further explores and aligns the model to user preferences. We evaluate LLM-Personalize on Housekeep, a challenging simulated real-world 3D benchmark for household rearrangements, and show that LLM-Personalize achieves more than a 30 percent increase in success rate over existing LLM planners, showcasing significantly improved alignment with human preferences.
@misc{han2024llmpersonalize,
title={LLM-Personalize: Aligning LLM Planners with Human Preferences via Reinforced Self-Training for Housekeeping Robots},
author={Dongge Han and Trevor McInroe and Adam Jelley and Stefano V. Albrecht and Peter Bell and Amos Storkey},
year={2024},
eprint={2404.14285},
archivePrefix={arXiv},
primaryClass={cs.RO}
}