Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Elliot-Fosong
2024
Elliot Fosong, Arrasy Rahman, Ignacio Carlucho, Stefano V. Albrecht
Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition
International Conference on Autonomous Agents and Multi-Agent Systems, 2024
Abstract | BibTex | arXiv | Code
AAMASmulti-agent-rl
Abstract:
Training a team to complete a complex task via multi-agent reinforcement learning can be difficult due to challenges such as policy search in a large joint policy space, and non-stationarity caused by mutually adapting agents. To facilitate efficient learning of complex multi-agent tasks, we propose an approach which uses an expert-provided decomposition of a task into simpler multi-agent sub-tasks. In each sub-task, a subset of the entire team is trained to acquire sub-task-specific policies. The sub-teams are then merged and transferred to the target task, where their policies are collectively fine-tuned to solve the more complex target task. We show empirically that such approaches can greatly reduce the number of timesteps required to solve a complex target task relative to training from-scratch. However, we also identify and investigate two problems with naive implementations of approaches based on sub-task decomposition, and propose a simple and scalable method to address these problems which augments existing actor-critic algorithms. We demonstrate the empirical benefits of our proposed method, enabling sub-task decomposition approaches to be deployed in diverse multi-agent tasks.
@inproceedings{fosongLearningComplexTeamwork2024,
title = {Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition},
author = {Fosong, Elliot and Rahman, Arrasy and Carlucho, Ignacio and Albrecht, Stefano V.},
booktitle = {Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems},
year = {2024}
}
2023
Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, Stefano V. Albrecht
Generating Teammates for Training Robust Ad Hoc Teamwork Agents via Best-Response Diversity
Transactions on Machine Learning Research, 2023
Abstract | BibTex | arXiv | Code
TMLRad-hoc-teamworkmulti-agent-rldeep-rl
Abstract:
Ad hoc teamwork (AHT) is the challenge of designing a robust learner agent that effectively collaborates with unknown teammates without prior coordination mechanisms. Early approaches address the AHT challenge by training the learner with a diverse set of handcrafted teammate policies, usually designed based on an expert's domain knowledge about the policies the learner may encounter. However, implementing teammate policies for training based on domain knowledge is not always feasible. In such cases, recent approaches attempted to improve the robustness of the learner by training it with teammate policies generated by optimising information-theoretic diversity metrics. The problem with optimising existing information-theoretic diversity metrics for teammate policy generation is the emergence of superficially different teammates. When used for AHT training, superficially different teammate behaviours may not improve a learner's robustness during collaboration with unknown teammates. In this paper, we present an automated teammate policy generation method optimising the Best-Response Diversity (BRDiv) metric, which measures diversity based on the compatibility of teammate policies in terms of returns. We evaluate our approach in environments with multiple valid coordination strategies, comparing against methods optimising information-theoretic diversity metrics and an ablation not optimising any diversity metric. Our experiments indicate that optimising BRDiv yields a diverse set of training teammate policies that improve the learner's performance relative to previous teammate generation approaches when collaborating with near-optimal previously unseen teammate policies.
@article{rahman2023BRDiv,
title={Generating Teammates for Training Robust Ad Hoc Teamwork Agents via Best-Response Diversity},
author={Arrasy Rahman and Elliot Fosong and Ignacio Carlucho and Stefano V. Albrecht},
journal={Transactions on Machine Learning Research (TMLR)},
year={2023}
}
Elliot Fosong, Arrasy Rahman, Ignacio Carlucho, Stefano V. Albrecht
Learning Complex Teamwork Tasks Using a Sub-task Curriculum
AAMAS Workshop on Multiagent Sequential Decision Making Under Uncertainty, 2023
Abstract | BibTex | arXiv | Code
AAMASmulti-agent-rlad-hoc-teamworktransfer-learning
Abstract:
Training a team to complete a complex task via multi-agent reinforcement learning can be difficult due to challenges such as policy search in a large policy space, and non-stationarity caused by mutually adapting agents. To facilitate efficient learning of complex multi-agent tasks, we propose an approach which uses an expert-provided curriculum of simpler multi-agent sub-tasks. In each sub-task of the curriculum, a subset of the entire team is trained to acquire sub-task-specific policies. The sub-teams are then merged and transferred to the target task, where their policies are collectively fined tuned to solve the more complex target task. We present MEDoE, a flexible method which identifies situations in the target task where each agent can use its sub-task-specific skills, and uses this information to modulate hyperparameters for learning and exploration during the fine-tuning process. We compare MEDoE to multi-agent reinforcement learning baselines that train from scratch in the full task, and with naïve applications of standard multi-agent reinforcement learning techniques for fine-tuning. We show that MEDoE outperforms baselines which train from scratch or use naïve fine-tuning approaches, requiring significantly fewer total training timesteps to solve a range of complex teamwork tasks.
@inproceedings{fosong2023learning,
title={Learning complex teamwork tasks using a sub-task curriculum},
author={Elliot Fosong, Arrasy Rahman, Ignacio Carlucho and Stefano V. Albrecht},
booktitle={AAMAS Workshop on Multiagent Sequential Decision Making under Uncertainty},
year={2023},
}
2022
Ibrahim H. Ahmed, Cillian Brewitt, Ignacio Carlucho, Filippos Christianos, Mhairi Dunion, Elliot Fosong, Samuel Garcin, Shangmin Guo, Balint Gyevnar, Trevor McInroe, Georgios Papoudakis, Arrasy Rahman, Lukas Schäfer, Massimiliano Tamborski, Giuseppe Vecchio, Cheng Wang, Stefano V. Albrecht
Deep Reinforcement Learning for Multi-Agent Interaction
AI Communications, 2022
Abstract | BibTex | arXiv | Publisher
AICsurveydeep-rlmulti-agent-rlad-hoc-teamworkagent-modellinggoal-recognitionsecurityexplainable-aiautonomous-driving
Abstract:
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
@article{albrecht2022aic,
author = {Ahmed, Ibrahim H. and Brewitt, Cillian and Carlucho, Ignacio and Christianos, Filippos and Dunion, Mhairi and Fosong, Elliot and Garcin, Samuel and Guo, Shangmin and Gyevnar, Balint and McInroe, Trevor and Papoudakis, Georgios and Rahman, Arrasy and Schäfer, Lukas and Tamborski, Massimiliano and Vecchio, Giuseppe and Wang, Cheng and Albrecht, Stefano V.},
title = {Deep Reinforcement Learning for Multi-Agent Interaction},
journal = {AI Communications, Special Issue on Multi-Agent Systems Research in the UK},
year = {2022}
}
Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, Stefano V. Albrecht
Towards Robust Ad Hoc Teamwork Agents By Creating Diverse Training Teammates
IJCAI Workshop on Ad Hoc Teamwork, 2022
Abstract | BibTex | arXiv | Code
IJCAIad-hoc-teamworkmulti-agent-rl
Abstract:
Ad hoc teamwork (AHT) is the problem of creating an agent that must collaborate with previously unseen teammates without prior coordination. Many existing AHT methods can be categorised as type-based methods, which require a set of predefined teammates for training. Designing teammate types for training is a challenging issue that determines the generalisation performance of agents when dealing with teammate types unseen during training. In this work, we propose a method to discover diverse teammate types based on maximising best response diversity metrics. We show that our proposed approach yields teammate types that require a wider range of best responses from the learner during collaboration, which potentially improves the robustness of a learner's performance in AHT compared to alternative methods.
@inproceedings{rahman2022towards,
title={Towards Robust Ad Hoc Teamwork Agents By Creating Diverse Training Teammates},
author={Arrasy Rahman and Elliot Fosong and Ignacio Carlucho and Stefano V. Albrecht},
booktitle={IJCAI Workshop on Ad Hoc Teamwork},
year={2022}
}
Elliot Fosong, Arrasy Rahman, Ignacio Carlucho, Stefano V. Albrecht
Few-Shot Teamwork
IJCAI Workshop on Ad Hoc Teamwork, 2022
Abstract | BibTex | arXiv
IJCAIad-hoc-teamworkmulti-agent-rl
Abstract:
We propose the novel few-shot teamwork (FST) problem, where skilled agents trained in a team to complete one task are combined with skilled agents from different tasks, and together must learn to adapt to an unseen but related task. We discuss how the FST problem can be seen as addressing two separate problems: one of reducing the experience required to train a team of agents to complete a complex task; and one of collaborating with unfamiliar teammates to complete a new task. Progress towards solving FST could lead to progress in both multi-agent reinforcement learning and ad hoc teamwork.
@inproceedings{fosong2022fewshot,
title={Few-Shot Teamwork},
author={Elliot Fosong and Arrasy Rahman and Ignacio Carlucho and Stefano V. Albrecht},
booktitle={IJCAI Workshop on Ad Hoc Teamwork},
year={2022}
}
Ignacio Carlucho, Arrasy Rahman, William Ard, Elliot Fosong, Corina Barbalata, Stefano V. Albrecht
Cooperative Marine Operations Via Ad Hoc Teams
IJCAI Workshop on Ad Hoc Teamwork, 2022
Abstract | BibTex | arXiv
IJCAIad-hoc-teamworkmulti-agent-rl
Abstract:
While research in ad hoc teamwork has great potential for solving real-world robotic applications, most developments so far have been focusing on environments with simple dynamics. In this article, we discuss how the problem of ad hoc teamwork can be of special interest for marine robotics and how it can aid marine operations. Particularly, we present a set of challenges that need to be addressed for achieving ad hoc teamwork in underwater environments and we discuss possible solutions based on current state-of-the-art developments in the ad hoc teamwork literature.
@inproceedings{Carlucho2022UnderwaterAHT,
title={Cooperative Marine Operations Via Ad Hoc Teams},
author={Ignacio Carlucho, Arrasy Rahman, William Ard, Elliot Fosong, Corina Barbalata, Stefano V. Albrecht},
booktitle={IJCAI Workshop on Ad Hoc Teamwork},
year={2022}
}
Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan, Peter Stone, Stefano V. Albrecht
A Survey of Ad Hoc Teamwork Research
European Conference on Multi-Agent Systems, 2022
Abstract | BibTex | arXiv
EUMASsurveyad-hoc-teamwork
Abstract:
Ad hoc teamwork is the research problem of designing agents that can collaborate with new teammates without prior coordination. This survey makes a two-fold contribution: First, it provides a structured description of the different facets of the ad hoc teamwork problem. Second, it discusses the progress that has been made in the field so far, and identifies the immediate and long-term open problems that need to be addressed in ad hoc teamwork.
@inproceedings{mirsky2022survey,
title={A Survey of Ad Hoc Teamwork Research},
author={Reuth Mirsky and Ignacio Carlucho and Arrasy Rahman and Elliot Fosong and William Macke and Mohan Sridharan and Peter Stone and Stefano V. Albrecht},
booktitle={European Conference on Multi-Agent Systems (EUMAS)},
year={2022}
}
2021
Josiah P. Hanna, Arrasy Rahman, Elliot Fosong, Francisco Eiras, Mihai Dobre, John Redford, Subramanian Ramamoorthy, Stefano V. Albrecht
Interpretable Goal Recognition in the Presence of Occluded Factors for Autonomous Vehicles
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021
Abstract | BibTex | arXiv
IROSautonomous-drivinggoal-recognitionexplainable-ai
Abstract:
Recognising the goals or intentions of observed vehicles is a key step towards predicting the long-term future behaviour of other agents in an autonomous driving scenario. When there are unseen obstacles or occluded vehicles in a scenario, goal recognition may be confounded by the effects of these unseen entities on the behaviour of observed vehicles. Existing prediction algorithms that assume rational behaviour with respect to inferred goals may fail to make accurate long-horizon predictions because they ignore the possibility that the behaviour is influenced by such unseen entities. We introduce the Goal and Occluded Factor Inference (GOFI) algorithm which bases inference on inverse-planning to jointly infer a probabilistic belief over goals and potential occluded factors. We then show how these beliefs can be integrated into Monte Carlo Tree Search (MCTS). We demonstrate that jointly inferring goals and occluded factors leads to more accurate beliefs with respect to the true world state and allows an agent to safely navigate several scenarios where other baselines take unsafe actions leading to collisions.
@inproceedings{hanna2021interpretable,
title={Interpretable Goal Recognition in the Presence of Occluded Factors for Autonomous Vehicles},
author={Josiah P. Hanna and Arrasy Rahman and Elliot Fosong and Francisco Eiras and Mihai Dobre and John Redford and Subramanian Ramamoorthy and Stefano V. Albrecht},
booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2021}
}
Ibrahim H. Ahmed, Josiah P. Hanna, Elliot Fosong, Stefano V. Albrecht
Towards Quantum-Secure Authentication and Key Agreement via Abstract Multi-Agent Interaction
International Conference on Practical Applications of Agents and Multi-Agent Systems, 2021
Abstract | BibTex | arXiv | Publisher | Code
PAAMSsecurityagent-modelling
Abstract:
Current methods for authentication and key agreement based on public-key cryptography are vulnerable to quantum computing. We propose a novel approach based on artificial intelligence research in which communicating parties are viewed as autonomous agents which interact repeatedly using their private decision models. Authentication and key agreement are decided based on the agents' observed behaviors during the interaction. The security of this approach rests upon the difficulty of modeling the decisions of interacting agents from limited observations, a problem which we conjecture is also hard for quantum computing. We release PyAMI, a prototype authentication and key agreement system based on the proposed method. We empirically validate our method for authenticating legitimate users while detecting different types of adversarial attacks. Finally, we show how reinforcement learning techniques can be used to train server models which effectively probe a client's decisions to achieve more sample-efficient authentication.
@inproceedings{ahmed2021quantum,
title={Towards Quantum-Secure Authentication and Key Agreement via Abstract Multi-Agent Interaction},
author={Ibrahim H. Ahmed and Josiah P. Hanna and Elliot Fosong and Stefano V. Albrecht},
booktitle={International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS)},
year={2021}
}