Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Filippos-Christianos
2024
Stefano V. Albrecht, Filippos Christianos, Lukas Schäfer
Multi-Agent Reinforcement Learning: Foundations and Modern Approaches
MIT Press (print version scheduled for December 2024), 2024
Abstract | BibTex | Book website | Book codebase
MITPmulti-agent-rldeep-rldeep-learningsurvey
Abstract:
Textbook published by MIT Press.
@book{ marl-book,
author = {Stefano V. Albrecht and Filippos Christianos and Lukas Sch\"afer},
title = {Multi-Agent Reinforcement Learning: Foundations and Modern Approaches},
publisher = {MIT Press},
year = {2024},
url = {https://www.marl-book.com}
}
2023
Filippos Christianos, Georgios Papoudakis, Stefano V. Albrecht
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
Transactions on Machine Learning Research, 2023
Abstract | BibTex | arXiv | Code
TMLRdeep-rlmulti-agent-rl
Abstract:
This work focuses on equilibrium selection in no-conflict multi-agent games, where we specifically study the problem of selecting a Pareto-optimal Nash equilibrium among several existing equilibria. It has been shown that many state-of-the-art multi-agent reinforcement learning (MARL) algorithms are prone to converging to Pareto-dominated equilibria due to the uncertainty each agent has about the policy of the other agents during training. To address sub-optimal equilibrium selection, we propose Pareto Actor-Critic (Pareto-AC), which is an actor-critic algorithm that utilises a simple property of no-conflict games (a superset of cooperative games): the Pareto-optimal equilibrium in a no-conflict game maximises the returns of all agents and, therefore, is the preferred outcome for all agents. We evaluate Pareto-AC in a diverse set of multi-agent games and show that it converges to higher episodic returns compared to seven state-of-the-art MARL algorithms and that it successfully converges to a Pareto-optimal equilibrium in a range of matrix games. Finally, we propose PACDCG, a graph neural network extension of Pareto-AC, which is shown to efficiently scale in games with a large number of agents.
@article{christianos2023pareto,
title={Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning},
author={Filippos Christianos and Georgios Papoudakis and Stefano V. Albrecht},
journal={Transactions on Machine Learning Research (TMLR)},
year={2023}
}
Lukas Schäfer, Filippos Christianos, Amos Storkey, Stefano V. Albrecht
Learning Task Embeddings for Teamwork Adaptation in Multi-Agent Reinforcement Learning
NeurIPS Workshop on Generalization in Planning, 2023
Abstract | BibTex | arXiv | Code
NeurIPSmulti-agent-rldeep-rl
Abstract:
Successful deployment of multi-agent reinforcement learning often requires agents to adapt their behaviour. In this work, we discuss the problem of teamwork adaptation in which a team of agents needs to adapt their policies to solve novel tasks with limited fine-tuning. Motivated by the intuition that agents need to be able to identify and distinguish tasks in order to adapt their behaviour to the current task, we propose to learn multi-agent task embeddings (MATE). These task embeddings are trained using an encoder-decoder architecture optimised for reconstruction of the transition and reward functions which uniquely identify tasks. We show that a team of agents is able to adapt to novel tasks when provided with task embeddings. We propose three MATE training paradigms: independent MATE, centralised MATE, and mixed MATE which vary in the information used for the task encoding. We show that the embeddings learned by MATE identify tasks and provide useful information which agents leverage during adaptation to novel tasks.
@inproceedings{schaefer2023mate,
title={Learning Task Embeddings for Teamwork Adaptation in Multi-Agent Reinforcement Learning},
author={Lukas Schäfer and Filippos Christianos and Amos Storkey and Stefano V. Albrecht},
booktitle={NeurIPS Workshop on Generalization in Planning},
year={2023}
}
Filippos Christianos, Peter Karkus, Boris Ivanovic, Stefano V. Albrecht, Marco Pavone
Planning with Occluded Traffic Agents using Bi-Level Variational Occlusion Models
IEEE International Conference on Robotics and Automation, 2023
Abstract | BibTex | arXiv
ICRAdeep-rlautonomous-driving
Abstract:
Reasoning with occluded traffic agents is a significant open challenge for planning for autonomous vehicles. Recent deep learning models have shown impressive results for predicting occluded agents based on the behaviour of nearby visible agents; however, as we show in experiments, these models are difficult to integrate into downstream planning. To this end, we propose Bi-level Variational Occlusion Models (BiVO), a two-step generative model that first predicts likely locations of occluded agents, and then generates likely trajectories for the occluded agents. In contrast to existing methods, BiVO outputs a trajectory distribution which can then be sampled from and integrated into standard downstream planning. We evaluate the method in closed-loop replay simulation using the real-world nuScenes dataset. Our results suggest that BiVO can successfully learn to predict occluded agent trajectories, and these predictions lead to better subsequent motion plans in critical scenarios.
@inproceedings{christianos2023planning,
title={Planning with Occluded Traffic Agents using Bi-Level Variational Occlusion Models},
author={Filippos Christianos and Peter Karkus and Boris Ivanovic and Stefano V. Albrecht and Marco Pavone},
booktitle={International Conference on Robotics and Automation (ICRA)},
year={2023}
}
Filippos Christianos, Georgios Papoudakis, Stefano V. Albrecht
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
AAMAS Workshop on Optimization and Learning in Multiagent Systems, 2023
Abstract | BibTex | arXiv
AAMASdeep-rlmulti-agent-rl
Abstract:
This work focuses on equilibrium selection in no-conflict multi-agent games, where we specifically study the problem of selecting a Pareto-optimal equilibrium among several existing equilibria. It has been shown that many state-of-the-art multi-agent reinforcement learning (MARL) algorithms are prone to converging to Pareto-dominated equilibria due to the uncertainty each agent has about the policy of the other agents during training. To address suboptimal equilibrium selection, we propose Pareto Actor-Critic (Pareto-AC), an actor-critic algorithm that utilises a simple property of no-conflict games (a superset of cooperative games with identical rewards): each agent can assume the others will choose actions that will lead to a Pareto-optimal equilibrium. We evaluate Pareto-AC in a diverse set of multi-agent games and show that it converges to higher episodic returns compared to alternative MARL algorithms, as well as successfully converging to a Pareto-optimal equilibrium in a range of matrix games.
@inproceedings{christianos2023pareto,
title={Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning},
author={Filippos Christianos and Georgios Papoudakis and Stefano V. Albrecht},
booktitle={AAMAS Workshop on Optimization and Learning in Multiagent Systems},
year={2023}
}
Adam Michalski, Filippos Christianos, Stefano V. Albrecht
SMAClite: A Lightweight Environment for Multi-Agent Reinforcement Learning
AAMAS Workshop on Multiagent Sequential Decision Making Under Uncertainty, 2023
Abstract | BibTex | arXiv | Code
AAMASdeep-rlmulti-agent-rl
Abstract:
There is a lack of standard benchmarks for Multi-Agent Reinforcement Learning (MARL) algorithms. The Starcraft Multi-Agent Challenge (SMAC) has been widely used in MARL research, but is built on top of a heavy, closed-source computer game, StarCraft II. Thus, SMAC is computationally expensive and requires knowledge and the use of proprietary tools specific to the game for any meaningful alteration or contribution to the environment. We introduce SMAClite -- a challenge based on SMAC that is both decoupled from Starcraft II and open-source, along with a framework which makes it possible to create new content for SMAClite without any special knowledge. We conduct experiments to show that SMAClite is equivalent to SMAC, by training MARL algorithms on SMAClite and reproducing SMAC results. We then show that SMAClite outperforms SMAC in both runtime speed and memory.
@inproceedings{michalski2023smaclite,
title={SMAClite: A Lightweight Environment for Multi-Agent Reinforcement Learning},
author={Adam Michalski and Filippos Christianos and Stefano V. Albrecht},
booktitle={AAMAS workshop on Multiagent Sequential Decision Making Under Uncertainty (MSDM)},
year={2023}
}
Callum Tilbury, Filippos Christianos, Stefano V. Albrecht
Revisiting the Gumbel-Softmax in MADDPG
AAMAS Workshop on Adaptive and Learning Agents, 2023
Abstract | BibTex | arXiv | Code
AAMASmulti-agent-rldeep-rl
Abstract:
MADDPG is an algorithm in multi-agent reinforcement learning (MARL) that extends the popular single-agent method, DDPG, to multi-agent scenarios. Importantly, DDPG is an algorithm designed for continuous action spaces, where the gradient of the state-action value function exists. For this algorithm to work in discrete action spaces, discrete gradient estimation must be performed. For MADDPG, the Gumbel-Softmax (GS) estimator is used -- a reparameterisation which relaxes a discrete distribution into a similar continuous one. This method, however, is statistically biased, and a recent MARL benchmarking paper suggests that this bias makes MADDPG perform poorly in grid-world situations, where the action space is discrete. Fortunately, many alternatives to the GS exist, boasting a wide range of properties. This paper explores several of these alternatives and integrates them into MADDPG for discrete grid-world scenarios. The corresponding impact on various performance metrics is then measured and analysed. It is found that one of the proposed estimators performs significantly better than the original GS in several tasks, achieving up to 55\% higher returns, along with faster convergence.
@inproceedings{tilbury2023revisitingmaddpg,
title={Revisiting the Gumbel-Softmax in MADDPG},
author={Callum Tilbury and Filippos Christianos and Stefano V. Albrecht},
year={2023},
booktitle={AAMAS Workshop on Adaptive and Learning Agents (ALA)},
}
2022
Ibrahim H. Ahmed, Cillian Brewitt, Ignacio Carlucho, Filippos Christianos, Mhairi Dunion, Elliot Fosong, Samuel Garcin, Shangmin Guo, Balint Gyevnar, Trevor McInroe, Georgios Papoudakis, Arrasy Rahman, Lukas Schäfer, Massimiliano Tamborski, Giuseppe Vecchio, Cheng Wang, Stefano V. Albrecht
Deep Reinforcement Learning for Multi-Agent Interaction
AI Communications, 2022
Abstract | BibTex | arXiv | Publisher
AICsurveydeep-rlmulti-agent-rlad-hoc-teamworkagent-modellinggoal-recognitionsecurityexplainable-aiautonomous-driving
Abstract:
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
@article{albrecht2022aic,
author = {Ahmed, Ibrahim H. and Brewitt, Cillian and Carlucho, Ignacio and Christianos, Filippos and Dunion, Mhairi and Fosong, Elliot and Garcin, Samuel and Guo, Shangmin and Gyevnar, Balint and McInroe, Trevor and Papoudakis, Georgios and Rahman, Arrasy and Schäfer, Lukas and Tamborski, Massimiliano and Vecchio, Giuseppe and Wang, Cheng and Albrecht, Stefano V.},
title = {Deep Reinforcement Learning for Multi-Agent Interaction},
journal = {AI Communications, Special Issue on Multi-Agent Systems Research in the UK},
year = {2022}
}
Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, Stefano V. Albrecht
Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated Exploration
International Conference on Autonomous Agents and Multi-Agent Systems, 2022
Abstract | BibTex | arXiv | Code
AAMASdeep-rlintrinsic-reward
Abstract:
Intrinsic rewards can improve exploration in reinforcement learning, but the exploration process may suffer from instability caused by non-stationary reward shaping and strong dependency on hyperparameters. In this work, we introduce Decoupled RL (DeRL) as a general framework which trains separate policies for intrinsically-motivated exploration and exploitation. Such decoupling allows DeRL to leverage the benefits of intrinsic rewards for exploration while demonstrating improved robustness and sample efficiency. We evaluate DeRL algorithms in two sparse-reward environments with multiple types of intrinsic rewards. Our results show that DeRL is more robust to varying scale and rate of decay of intrinsic rewards and converges to the same evaluation returns than intrinsically-motivated baselines in fewer interactions. Lastly, we discuss the challenge of distribution shift and show that divergence constraint regularisers can successfully minimise instability caused by divergence of exploration and exploitation policies.
@inproceedings{schaefer2022derl,
title={Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated Exploration},
author={Lukas Schäfer and Filippos Christianos and Josiah P. Hanna and Stefano V. Albrecht},
booktitle={International Conference on Autonomous Agents and Multiagent Systems (AAMAS)},
year={2022}
}
Filippos Christianos
Collaborative Training of Multiple Autonomous Agents
International Conference on Autonomous Agents and Multiagent Systems, Doctoral Consortium, 2022
Abstract | BibTex | Paper
AAMASmulti-agent-rl
Abstract:
Exploration in multi-agent reinforcement learning is a challenging problem, especially with a large number of agents. Parameter sharing between agents is often used since it significantly decreases the number of trainable parameters, shortening training times to tractable levels and improving exploration efficiency. We present two algorithms that aim to be a middle ground between not sharing parameters and fully sharing parameters. These proposed algorithms show the advantages of the baselines at the two ends of the spectrum and minimise their drawbacks. First, Shared Experience Actor-Critic [Christianos et al. 2020], applies the basic idea of off-policy correction via importance weighting and combines the experiences generated by different agents into more informative and effective learning gradients. Then, Selective Parameter Sharing [Christianos et al. 2021], based on rigorous empirical analysis of the impact of parameter sharing proposes a novel parameter sharing method that can be coupled with existing multi-agent reinforcement learning algorithms.
@inproceedings{christianos2022collaborative,
title={Collaborative Training of Multiple Autonomous Agents},
author={Filippos Christianos},
booktitle={Doctoral Consortium at the International Conference on Autonomous Agents and Multiagent Systems},
year={2022}
}
Lukas Schäfer, Filippos Christianos, Amos Storkey, Stefano V. Albrecht
Learning Task Embeddings for Teamwork Adaptation in Multi-Agent Reinforcement Learning
arxiv:2207.02249, 2022
Abstract | BibTex | arXiv
deep-rlmulti-agent-rl
Abstract:
Successful deployment of multi-agent reinforcement learning often requires agents to adapt their behaviour. In this work, we discuss the problem of teamwork adaptation in which a team of agents needs to adapt their policies to solve novel tasks with limited fine-tuning. Motivated by the intuition that agents need to be able to identify and distinguish tasks in order to adapt their behaviour to the current task, we propose to learn multi-agent task embeddings (MATE). These task embeddings are trained using an encoder-decoder architecture optimised for reconstruction of the transition and reward functions which uniquely identify tasks. We show that a team of agents is able to adapt to novel tasks when provided with task embeddings. We propose three MATE training paradigms: independent MATE, centralised MATE, and mixed MATE which vary in the information used for the task encoding. We show that the embeddings learned by MATE identify tasks and provide useful information which agents leverage during adaptation to novel tasks.
@misc{schaefer2022mate,
title={Learning Task Embeddings for Teamwork Adaptation in Multi-Agent Reinforcement Learning},
author={Lukas Schäfer and Filippos Christianos and Amos Storkey and Stefano V. Albrecht},
year={2022},
eprint={2207.02249},
archivePrefix={arXiv},
primaryClass={cs.MA}
}
Filippos Christianos, Georgios Papoudakis, Stefano V. Albrecht
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
arXiv:2209.14344, 2022
Abstract | BibTex | arXiv
deep-rlmulti-agent-rl
Abstract:
Equilibrium selection in multi-agent games refers to the problem of selecting a Pareto-optimal equilibrium. It has been shown that many state-of-the-art multi-agent reinforcement learning (MARL) algorithms are prone to converging to Pareto-dominated equilibria due to the uncertainty each agent has about the policy of the other agents during training. To address suboptimal equilibrium selection, we propose Pareto-AC (PAC), an actor-critic algorithm that utilises a simple principle of no-conflict games (a superset of cooperative games with identical rewards): each agent can assume the others will choose actions that will lead to a Pareto-optimal equilibrium. We evaluate PAC in a diverse set of multi-agent games and show that it converges to higher episodic returns compared to alternative MARL algorithms, as well as successfully converging to a Pareto-optimal equilibrium in a range of matrix games. Finally, we propose a graph neural network extension which is shown to efficiently scale in games with up to 15 agents.
@misc{christianos2022pareto,
title={Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning},
author={Filippos Christianos and Georgios Papoudakis and Stefano V. Albrecht},
year={2022},
eprint={2209.14344},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Filippos Christianos, Peter Karkus, Boris Ivanovic, Stefano V. Albrecht, Marco Pavone
Planning with Occluded Traffic Agents using Bi-Level Variational Occlusion Models
arXiv:2210.14584, 2022
Abstract | BibTex | arXiv
autonomous-driving
Abstract:
Reasoning with occluded traffic agents is a significant open challenge for planning for autonomous vehicles. Recent deep learning models have shown impressive results for predicting occluded agents based on the behaviour of nearby visible agents; however, as we show in experiments, these models are difficult to integrate into downstream planning. To this end, we propose Bi-level Variational Occlusion Models (BiVO), a two-step generative model that first predicts likely locations of occluded agents, and then generates likely trajectories for the occluded agents. In contrast to existing methods, BiVO outputs a trajectory distribution which can then be sampled from and integrated into standard downstream planning. We evaluate the method in closed-loop replay simulation using the real-world nuScenes dataset. Our results suggest that BiVO can successfully learn to predict occluded agent trajectories, and these predictions lead to better subsequent motion plans in critical scenarios.
@misc{christianos2022bivo,
title={Planning with Occluded Traffic Agents using Bi-Level Variational Occlusion Models},
author={Filippos Christianos and Peter Karkus and Boris Ivanovic and Stefano V. Albrecht and Marco Pavone},
year={2022},
eprint={2210.14584},
archivePrefix={arXiv}
}
2021
Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, Stefano V. Albrecht
Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks
Conference on Neural Information Processing Systems, Datasets and Benchmarks Track, 2021
Abstract | BibTex | arXiv | Code
NeurIPSdeep-rlmulti-agent-rl
Abstract:
Multi-agent deep reinforcement learning (MARL) suffers from a lack of commonly-used evaluation tasks and criteria, making comparisons between approaches difficult. In this work, we consistently evaluate and compare three different classes of MARL algorithms (independent learning, centralised multi-agent policy gradient, value decomposition) in a diverse range of cooperative multi-agent learning tasks. Our experiments serve as a reference for the expected performance of algorithms across different learning tasks, and we provide insights regarding the effectiveness of different learning approaches. We open-source EPyMARL, which extends the PyMARL codebase [Samvelyan et al., 2019] to include additional algorithms and allow for flexible configuration of algorithm implementation details such as parameter sharing. Finally, we open-source two environments for multi-agent research which focus on coordination under sparse rewards.
@inproceedings{papoudakis2021benchmarking,
title={Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks},
author={Georgios Papoudakis and Filippos Christianos and Lukas Sch\"afer and Stefano V. Albrecht},
booktitle = {Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS)},
year={2021},
url = {http://arxiv.org/abs/2006.07869},
openreview = {https://openreview.net/forum?id=cIrPX-Sn5n},
code = {https://github.com/uoe-agents/epymarl}
}
Georgios Papoudakis, Filippos Christianos, Stefano V. Albrecht
Agent Modelling under Partial Observability for Deep Reinforcement Learning
Conference on Neural Information Processing Systems, 2021
Abstract | BibTex | arXiv | Code
NeurIPSdeep-rlagent-modelling
Abstract:
Modelling the behaviours of other agents is essential for understanding how agents interact and making effective decisions. Existing methods for agent modelling commonly assume knowledge of the local observations and chosen actions of the modelled agents during execution. To eliminate this assumption, we extract representations from the local information of the controlled agent using encoder-decoder architectures. Using the observations and actions of the modelled agents during training, our models learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent. The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning; thus, during execution, the policy does not require access to other agents' information. We provide a comprehensive evaluation and ablations studies in cooperative, competitive and mixed multi-agent environments, showing that our method achieves significantly higher returns than baseline methods which do not use the learned representations.
@inproceedings{papoudakis2021local,
title={Agent Modelling under Partial Observability for Deep Reinforcement Learning},
author={Georgios Papoudakis and Filippos Christianos and Stefano V. Albrecht},
booktitle = {Proceedings of the Neural Information Processing Systems (NeurIPS)},
year = {2021}
}
Arrasy Rahman, Niklas Höpner, Filippos Christianos, Stefano V. Albrecht
Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning
International Conference on Machine Learning, 2021
Abstract | BibTex | arXiv | Video | Code
ICMLdeep-rlagent-modellingad-hoc-teamwork
Abstract:
Ad hoc teamwork is the challenging problem of designing an autonomous agent which can adapt quickly to collaborate with teammates without prior coordination mechanisms, including joint training. Prior work in this area has focused on closed teams in which the number of agents is fixed. In this work, we consider open teams by allowing agents with different fixed policies to enter and leave the environment without prior notification. Our solution builds on graph neural networks to learn agent models and joint-action value models under varying team compositions. We contribute a novel action-value computation that integrates the agent model and joint-action value model to produce action-value estimates. We empirically demonstrate that our approach successfully models the effects other agents have on the learner, leading to policies that robustly adapt to dynamic team compositions and significantly outperform several alternative methods.
@inproceedings{rahman2021open,
title={Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning},
author={Arrasy Rahman and Niklas H\"opner and Filippos Christianos and Stefano V. Albrecht},
booktitle={International Conference on Machine Learning (ICML)},
year={2021}
}
Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, Stefano V. Albrecht
Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing
International Conference on Machine Learning, 2021
Abstract | BibTex | arXiv | Video | Code
ICMLdeep-rlmulti-agent-rl
Abstract:
Sharing parameters in multi-agent deep reinforcement learning has played an essential role in allowing algorithms to scale to a large number of agents. Parameter sharing between agents significantly decreases the number of trainable parameters, shortening training times to tractable levels, and has been linked to more efficient learning. However, having all agents share the same parameters can also have a detrimental effect on learning. We demonstrate the impact of parameter sharing methods on training speed and converged returns, establishing that when applied indiscriminately, their effectiveness is highly dependent on the environment. We propose a novel method to automatically identify agents which may benefit from sharing parameters by partitioning them based on their abilities and goals. Our approach combines the increased sample efficiency of parameter sharing with the representational capacity of multiple independent networks to reduce training time and increase final returns.
@inproceedings{christianos2021scaling,
title={Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing},
author={Filippos Christianos and Georgios Papoudakis and Arrasy Rahman and Stefano V. Albrecht},
booktitle={International Conference on Machine Learning (ICML)},
year={2021}
}
Lukas Schäfer, Filippos Christianos, Josiah Hanna, Stefano V. Albrecht
Decoupling Exploration and Exploitation in Reinforcement Learning
ICML Workshop on Unsupervised Reinforcement Learning, 2021
Abstract | BibTex | arXiv | Code
ICMLdeep-rlintrinsic-reward
Abstract:
Intrinsic rewards are commonly applied to improve exploration in reinforcement learning. However, these approaches suffer from instability caused by non-stationary reward shaping and strong dependency on hyperparameters. In this work, we propose Decoupled RL (DeRL) which trains separate policies for exploration and exploitation. DeRL can be applied with on-policy and off-policy RL algorithms. We evaluate DeRL algorithms in two sparse-reward environments with multiple types of intrinsic rewards. We show that DeRL is more robust to scaling and speed of decay of intrinsic rewards and converges to the same evaluation returns than intrinsically motivated baselines in fewer interactions.
@inproceedings{schaefer2021decoupling,
title={Decoupling Exploration and Exploitation in Reinforcement Learning},
author={Lukas Schäfer and Filippos Christianos and Josiah Hanna and Stefano V. Albrecht},
booktitle={ICML Workshop on Unsupervised Reinforcement Learning (URL)},
year={2021}
}
2020
Filippos Christianos, Lukas Schäfer, Stefano V. Albrecht
Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning
Conference on Neural Information Processing Systems, 2020
Abstract | BibTex | arXiv
NeurIPSdeep-rlmulti-agent-rl
Abstract:
Exploration in multi-agent reinforcement learning is a challenging problem, especially in environments with sparse rewards. We propose a general method for efficient exploration by sharing experience amongst agents. Our proposed algorithm, called Shared Experience Actor-Critic (SEAC), applies experience sharing in an actor-critic framework. We evaluate SEAC in a collection of sparse-reward multi-agent environments and find that it consistently outperforms two baselines and two state-of-the-art algorithms by learning in fewer steps and converging to higher returns. In some harder environments, experience sharing makes the difference between learning to solve the task and not learning at all.
@inproceedings{christianos2020shared,
title={Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning},
author={Filippos Christianos and Lukas Sch\"afer and Stefano V. Albrecht},
booktitle={34th Conference on Neural Information Processing Systems},
year={2020}
}
Arrasy Rahman, Niklas Höpner, Filippos Christianos, Stefano V. Albrecht
Open Ad Hoc Teamwork using Graph-based Policy Learning
arXiv:2006.10412, 2020
Abstract | BibTex | arXiv
deep-rlagent-modellingad-hoc-teamwork
Abstract:
Ad hoc teamwork is the challenging problem of designing an autonomous agent which can adapt quickly to collaborate with previously unknown teammates. Prior work in this area has focused on closed teams in which the number of agents is fixed. In this work, we consider open teams by allowing agents of varying types to enter and leave the team without prior notification. Our proposed solution builds on graph neural networks to learn scalable agent models and value decompositions under varying team sizes, which can be jointly trained with a reinforcement learning agent using discounted returns objectives. We demonstrate empirically that our approach results in agent policies which can robustly adapt to dynamic team composition, and is able to effectively generalize to larger teams than were seen during training.
@misc{rahman2020open,
title={Open Ad Hoc Teamwork using Graph-based Policy Learning},
author={Arrasy Rahman and Niklas H\"opner and Filippos Christianos and Stefano V. Albrecht},
year={2020},
eprint={2006.10412},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Georgios Papoudakis, Filippos Christianos, Stefano V. Albrecht
Local Information Opponent Modelling Using Variational Autoencoders
arXiv:2006.09447, 2020
Abstract | BibTex | arXiv
deep-rlagent-modelling
Abstract:
Modelling the behaviours of other agents (opponents) is essential for understanding how agents interact and making effective decisions. Existing methods for opponent modelling commonly assume knowledge of the local observations and chosen actions of the modelled opponents, which can significantly limit their applicability. We propose a new modelling technique based on variational autoencoders, which are trained to reconstruct the local actions and observations of the opponent based on embeddings which depend only on the local observations of the modelling agent (its observed world state, chosen actions, and received rewards). The embeddings are used to augment the modelling agent's decision policy which is trained via deep reinforcement learning; thus the policy does not require access to opponent observations. We provide a comprehensive evaluation and ablation study in diverse multi-agent tasks, showing that our method achieves comparable performance to an ideal baseline which has full access to opponent's information, and significantly higher returns than a baseline method which does not use the learned embeddings.
@misc{papoudakis2020opponent,
title={Local Information Opponent Modelling Using Variational Autoencoders},
author={Georgios Papoudakis and Filippos Christianos and Stefano V. Albrecht},
year={2020},
eprint={2006.09447},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
2019
Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, Stefano V. Albrecht
Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning
arXiv:1906.04737, 2019
Abstract | BibTex | arXiv
surveydeep-rlmulti-agent-rl
Abstract:
Recent developments in deep reinforcement learning are concerned with creating decision-making agents which can perform well in various complex domains. A particular approach which has received increasing attention is multi-agent reinforcement learning, in which multiple agents learn concurrently to coordinate their actions. In such multi-agent environments, additional learning problems arise due to the continually changing decision-making policies of agents. This paper surveys recent works that address the non-stationarity problem in multi-agent deep reinforcement learning. The surveyed methods range from modifications in the training procedure, such as centralized training, to learning representations of the opponent's policy, meta-learning, communication, and decentralized learning. The survey concludes with a list of open problems and possible lines of future research.
@misc{papoudakis2019dealing,
title={Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning},
author={Georgios Papoudakis and Filippos Christianos and Arrasy Rahman and Stefano V. Albrecht},
year={2019},
eprint={1906.04737},
archivePrefix={arXiv},
primaryClass={cs.LG}
}