Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Jacob-W.-Crandall
2016
Stefano V. Albrecht, Jacob W. Crandall, Subramanian Ramamoorthy
Belief and Truth in Hypothesised Behaviours
Artificial Intelligence, 2016
Abstract | BibTex | arXiv | Publisher
AIJagent-modellingad-hoc-teamwork
Abstract:
There is a long history in game theory on the topic of Bayesian or “rational” learning, in which each player maintains beliefs over a set of alternative behaviours, or types, for the other players. This idea has gained increasing interest in the artificial intelligence (AI) community, where it is used as a method to control a single agent in a system composed of multiple agents with unknown behaviours. The idea is to hypothesise a set of types, each specifying a possible behaviour for the other agents, and to plan our own actions with respect to those types which we believe are most likely, given the observed actions of the agents. The game theory literature studies this idea primarily in the context of equilibrium attainment. In contrast, many AI applications have a focus on task completion and payoff maximisation. With this perspective in mind, we identify and address a spectrum of questions pertaining to belief and truth in hypothesised types. We formulate three basic ways to incorporate evidence into posterior beliefs and show when the resulting beliefs are correct, and when they may fail to be correct. Moreover, we demonstrate that prior beliefs can have a significant impact on our ability to maximise payoffs in the long-term, and that they can be computed automatically with consistent performance effects. Furthermore, we analyse the conditions under which we are able complete our task optimally, despite inaccuracies in the hypothesised types. Finally, we show how the correctness of hypothesised types can be ascertained during the interaction via an automated statistical analysis.
@article{ albrecht2016belief,
title = {Belief and Truth in Hypothesised Behaviours},
author = {Stefano V. Albrecht and Jacob W. Crandall and Subramanian Ramamoorthy},
journal = {Artificial Intelligence},
volume = {235},
pages = {63--94},
year = {2016},
publisher = {Elsevier},
note = {DOI: 10.1016/j.artint.2016.02.004}
}
2015
Stefano V. Albrecht, Jacob W. Crandall, Subramanian Ramamoorthy
An Empirical Study on the Practical Impact of Prior Beliefs over Policy Types
AAAI Conference on Artificial Intelligence, 2015
Abstract | BibTex | arXiv | Appendix
AAAIagent-modellingad-hoc-teamwork
Abstract:
Many multiagent applications require an agent to learn quickly how to interact with previously unknown other agents. To address this problem, researchers have studied learning algorithms which compute posterior beliefs over a hypothesised set of policies, based on the observed actions of the other agents. The posterior belief is complemented by the prior belief, which specifies the subjective likelihood of policies before any actions are observed. In this paper, we present the first comprehensive empirical study on the practical impact of prior beliefs over policies in repeated interactions. We show that prior beliefs can have a significant impact on the long-term performance of such methods, and that the magnitude of the impact depends on the depth of the planning horizon. Moreover, our results demonstrate that automatic methods can be used to compute prior beliefs with consistent performance effects. This indicates that prior beliefs could be eliminated as a manual parameter and instead be computed automatically.
@inproceedings{ albrecht2015empirical,
title = {An Empirical Study on the Practical Impact of Prior Beliefs over Policy Types},
author = {Stefano V. Albrecht and Jacob W. Crandall and Subramanian Ramamoorthy},
booktitle = {Proceedings of the 29th AAAI Conference on Artificial Intelligence},
pages = {1988--1994},
year = {2015}
}
Stefano V. Albrecht, Jacob W. Crandall, Subramanian Ramamoorthy
E-HBA: Using Action Policies for Expert Advice and Agent Typification
AAAI Workshop on Multiagent Interaction without Prior Coordination, 2015
Abstract | BibTex | arXiv | Appendix
AAAIagent-modellingad-hoc-teamwork
Abstract:
Past research has studied two approaches to utilise predefined policy sets in repeated interactions: as experts, to dictate our own actions, and as types, to characterise the behaviour of other agents. In this work, we bring these complementary views together in the form of a novel meta-algorithm, called Expert-HBA (E-HBA), which can be applied to any expert algorithm that considers the average (or total) payoff an expert has yielded in the past. E-HBA gradually mixes the past payoff with a predicted future payoff, which is computed using the type-based characterisation. We present results from a comprehensive set of repeated matrix games, comparing the performance of several well-known expert algorithms with and without the aid of E-HBA. Our results show that E-HBA has the potential to significantly improve the performance of expert algorithms.
@inproceedings{ albrecht2015ehba,
title = {{E-HBA}: Using Action Policies for Expert Advice and Agent Typification},
author = {Stefano V. Albrecht and Jacob W. Crandall and Subramanian Ramamoorthy},
booktitle = {AAAI Workshop on Multiagent Interaction without Prior Coordination},
address = {Austin, Texas, USA},
month = {January},
year = {2015}
}