Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
John-Redford
2024
Anthony Knittel, Majd Hawasly, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy
DiPA: Probabilistic Multi-Modal Interactive Prediction for Autonomous Driving
IEEE International Conference on Robotics and Automation, 2024
Abstract | BibTex | arXiv | Publisher
ICRAautonomous-drivingstate-estimation
Abstract:
Accurate prediction is important for operating an autonomous vehicle in
interactive scenarios. Prediction must be fast, to support multiple
requests from a planner exploring a range of possible futures. The
generated predictions must accurately represent the probabilities of
predicted trajectories, while also capturing different modes of
behaviour (such as turning left vs continuing straight at a junction).
To this end, we present DiPA, an interactive predictor that addresses
these challenging requirements. Previous interactive prediction methods
use an encoding of k-mode-samples, which under-represents the full
distribution. Other methods optimise closest-mode evaluations, which
test whether one of the predictions is similar to the ground-truth, but
allow additional unlikely predictions to occur, over-representing
unlikely predictions. DiPA addresses these limitations by using a
Gaussian-Mixture-Model to encode the full distribution, and optimising
predictions using both probabilistic and closest-mode measures. These
objectives respectively optimise probabilistic accuracy and the ability
to capture distinct behaviours, and there is a challenging trade-off
between them. We are able to solve both together using a novel training
regime. DiPA achieves new state-of-the-art performance on the
INTERACTION and NGSIM datasets, and improves over the baseline (MFP)
when both closest-mode and probabilistic evaluations are used. This
demonstrates effective prediction for supporting a planner on
interactive scenarios.
@article{Knittel2023dipa,
title={{DiPA:} Probabilistic Multi-Modal Interactive Prediction for Autonomous Driving},
author={Anthony Knittel and Majd Hawasly and Stefano V. Albrecht and John Redford and Subramanian Ramamoorthy},
journal={IEEE Robotics and Automation Letters},
volume={8},
number={8},
pages={4887--4894},
year={2023}
}
2023
Anthony Knittel, Majd Hawasly, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy
DiPA: Probabilistic Multi-Modal Interactive Prediction for Autonomous Driving
IEEE Robotics and Automation Letters, 2023
Abstract | BibTex | arXiv | Publisher
RA-Lautonomous-drivingstate-estimation
Abstract:
Accurate prediction is important for operating an autonomous vehicle in
interactive scenarios. Prediction must be fast, to support multiple
requests from a planner exploring a range of possible futures. The
generated predictions must accurately represent the probabilities of
predicted trajectories, while also capturing different modes of
behaviour (such as turning left vs continuing straight at a junction).
To this end, we present DiPA, an interactive predictor that addresses
these challenging requirements. Previous interactive prediction methods
use an encoding of k-mode-samples, which under-represents the full
distribution. Other methods optimise closest-mode evaluations, which
test whether one of the predictions is similar to the ground-truth, but
allow additional unlikely predictions to occur, over-representing
unlikely predictions. DiPA addresses these limitations by using a
Gaussian-Mixture-Model to encode the full distribution, and optimising
predictions using both probabilistic and closest-mode measures. These
objectives respectively optimise probabilistic accuracy and the ability
to capture distinct behaviours, and there is a challenging trade-off
between them. We are able to solve both together using a novel training
regime. DiPA achieves new state-of-the-art performance on the
INTERACTION and NGSIM datasets, and improves over the baseline (MFP)
when both closest-mode and probabilistic evaluations are used. This
demonstrates effective prediction for supporting a planner on
interactive scenarios.
@article{Knittel2023dipa,
title={{DiPA:} Probabilistic Multi-Modal Interactive Prediction for Autonomous Driving},
author={Anthony Knittel and Majd Hawasly and Stefano V. Albrecht and John Redford and Subramanian Ramamoorthy},
journal={IEEE Robotics and Automation Letters},
volume={8},
number={8},
pages={4887--4894},
year={2023}
}
2022
Majd Hawasly, Jonathan Sadeghi, Morris Antonello, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy
Perspectives on the System-level Design of a Safe Autonomous Driving Stack
AI Communications, 2022
Abstract | BibTex | arXiv | Publisher
AICsurveyautonomous-drivinggoal-recognitionexplainable-ai
Abstract:
Achieving safe and robust autonomy is the key bottleneck on the path towards broader adoption of autonomous vehicles technology. This motivates going beyond extrinsic metrics such as miles between disengagement, and calls for approaches that embody safety by design. In this paper, we address some aspects of this challenge, with emphasis on issues of motion planning and prediction. We do this through description of novel approaches taken to solving selected sub-problems within an autonomous driving stack, in the process introducing the design philosophy being adopted within Five. This includes safe-by-design planning, interpretable as well as verifiable prediction, and modelling of perception errors to enable effective sim-to-real and real-to-sim transfer within the testing pipeline of a realistic autonomous system.
@article{albrecht2022aic,
author = {Majd Hawasly and Jonathan Sadeghi and Morris Antonello and Stefano V. Albrecht and John Redford and Subramanian Ramamoorthy},
title = {Perspectives on the System-level Design of a Safe Autonomous Driving Stack},
journal = {AI Communications, Special Issue on Multi-Agent Systems Research in the UK},
year = {2022}
}
Morris Antonello, Mihai Dobre, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy
Flash: Fast and Light Motion Prediction for Autonomous Driving with Bayesian Inverse Planning and Learned Motion Profiles
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022
Abstract | BibTex | arXiv
IROSautonomous-drivingstate-estimation
Abstract:
Motion prediction of road users in traffic scenes is critical for autonomous driving systems that must take safe and robust decisions in complex dynamic environments. We present a novel motion prediction system for autonomous driving. Our system is based on the Bayesian inverse planning framework, which efficiently orchestrates map-based goal extraction, a classical control-based trajectory generator and an ensemble of light-weight neural networks specialised in motion profile prediction. In contrast to many alternative methods, this modularity helps isolate performance factors and better interpret results, without compromising performance. This system addresses multiple aspects of interest, namely multi-modality, motion profile uncertainty and trajectory physical feasibility. We report on several experiments with the popular highway dataset NGSIM, demonstrating state-of-the-art performance in terms of trajectory error. We also perform a detailed analysis of our system's components, along with experiments that stratify the data based on behaviours, such as change lane versus follow lane, to provide insights into the challenges in this domain. Finally, we present a qualitative analysis to show other benefits of our approach, such as the ability to interpret the outputs.
@inproceedings{antonello2022flash,
title={Flash: Fast and Light Motion Prediction for Autonomous Driving with {Bayesian} Inverse Planning and Learned Motion Profiles},
author={Morris Antonello, Mihai Dobre, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy},
booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2022}
}
Anthony Knittel, Majd Hawasly, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy
DiPA: Diverse and Probabilistically Accurate Interactive Prediction
arXiv:2210.06106, 2022
Abstract | BibTex | arXiv
autonomous-drivingstate-estimation
Abstract:
Accurate prediction is important for operating an autonomous vehicle in interactive scenarios. Previous interactive predictors have used closest-mode evaluations, which test if one of a set of predictions covers the ground-truth, but not if additional unlikely predictions are made. The presence of unlikely predictions can interfere with planning, by indicating conflict with the ego plan when it is not likely to occur. Closest-mode evaluations are not sufficient for showing a predictor is useful, an effective predictor also needs to accurately estimate mode probabilities, and to be evaluated using probabilistic measures. These two evaluation approaches, eg. predicted-mode RMS and minADE/FDE, are analogous to precision and recall in binary classification, and there is a challenging trade-off between prediction strategies for each. We present DiPA, a method for producing diverse predictions while also capturing accurate probabilistic estimates. DiPA uses a flexible representation that captures interactions in widely varying road topologies, and uses a novel training regime for a Gaussian Mixture Model that supports diversity of predicted modes, along with accurate spatial distribution and mode probability estimates. DiPA achieves state-of-the-art performance on INTERACTION and NGSIM, and improves over a baseline (MFP) when both closest-mode and probabilistic evaluations are used at the same time.
@misc{brewitt2022verifiable,
title={{DiPA:} Diverse and Probabilistically Accurate Interactive Prediction},
author={Anthony Knittel and Majd Hawasly and Stefano V. Albrecht and John Redford and Subramanian Ramamoorthy},
year={2022},
eprint={2210.06106},
archivePrefix={arXiv},
primaryClass={cs.RO}
}
2021
Josiah P. Hanna, Arrasy Rahman, Elliot Fosong, Francisco Eiras, Mihai Dobre, John Redford, Subramanian Ramamoorthy, Stefano V. Albrecht
Interpretable Goal Recognition in the Presence of Occluded Factors for Autonomous Vehicles
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021
Abstract | BibTex | arXiv
IROSautonomous-drivinggoal-recognitionexplainable-ai
Abstract:
Recognising the goals or intentions of observed vehicles is a key step towards predicting the long-term future behaviour of other agents in an autonomous driving scenario. When there are unseen obstacles or occluded vehicles in a scenario, goal recognition may be confounded by the effects of these unseen entities on the behaviour of observed vehicles. Existing prediction algorithms that assume rational behaviour with respect to inferred goals may fail to make accurate long-horizon predictions because they ignore the possibility that the behaviour is influenced by such unseen entities. We introduce the Goal and Occluded Factor Inference (GOFI) algorithm which bases inference on inverse-planning to jointly infer a probabilistic belief over goals and potential occluded factors. We then show how these beliefs can be integrated into Monte Carlo Tree Search (MCTS). We demonstrate that jointly inferring goals and occluded factors leads to more accurate beliefs with respect to the true world state and allows an agent to safely navigate several scenarios where other baselines take unsafe actions leading to collisions.
@inproceedings{hanna2021interpretable,
title={Interpretable Goal Recognition in the Presence of Occluded Factors for Autonomous Vehicles},
author={Josiah P. Hanna and Arrasy Rahman and Elliot Fosong and Francisco Eiras and Mihai Dobre and John Redford and Subramanian Ramamoorthy and Stefano V. Albrecht},
booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2021}
}