Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
John-RedfordICRA
2024
Anthony Knittel, Majd Hawasly, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy
DiPA: Probabilistic Multi-Modal Interactive Prediction for Autonomous Driving
IEEE International Conference on Robotics and Automation, 2024
Abstract | BibTex | arXiv | Publisher
ICRAautonomous-drivingstate-estimation
Abstract:
Accurate prediction is important for operating an autonomous vehicle in
interactive scenarios. Prediction must be fast, to support multiple
requests from a planner exploring a range of possible futures. The
generated predictions must accurately represent the probabilities of
predicted trajectories, while also capturing different modes of
behaviour (such as turning left vs continuing straight at a junction).
To this end, we present DiPA, an interactive predictor that addresses
these challenging requirements. Previous interactive prediction methods
use an encoding of k-mode-samples, which under-represents the full
distribution. Other methods optimise closest-mode evaluations, which
test whether one of the predictions is similar to the ground-truth, but
allow additional unlikely predictions to occur, over-representing
unlikely predictions. DiPA addresses these limitations by using a
Gaussian-Mixture-Model to encode the full distribution, and optimising
predictions using both probabilistic and closest-mode measures. These
objectives respectively optimise probabilistic accuracy and the ability
to capture distinct behaviours, and there is a challenging trade-off
between them. We are able to solve both together using a novel training
regime. DiPA achieves new state-of-the-art performance on the
INTERACTION and NGSIM datasets, and improves over the baseline (MFP)
when both closest-mode and probabilistic evaluations are used. This
demonstrates effective prediction for supporting a planner on
interactive scenarios.
@article{Knittel2023dipa,
title={{DiPA:} Probabilistic Multi-Modal Interactive Prediction for Autonomous Driving},
author={Anthony Knittel and Majd Hawasly and Stefano V. Albrecht and John Redford and Subramanian Ramamoorthy},
journal={IEEE Robotics and Automation Letters},
volume={8},
number={8},
pages={4887--4894},
year={2023}
}