Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Marco-Pavone
2023
Filippos Christianos, Peter Karkus, Boris Ivanovic, Stefano V. Albrecht, Marco Pavone
Planning with Occluded Traffic Agents using Bi-Level Variational Occlusion Models
IEEE International Conference on Robotics and Automation, 2023
Abstract | BibTex | arXiv
ICRAdeep-rlautonomous-driving
Abstract:
Reasoning with occluded traffic agents is a significant open challenge for planning for autonomous vehicles. Recent deep learning models have shown impressive results for predicting occluded agents based on the behaviour of nearby visible agents; however, as we show in experiments, these models are difficult to integrate into downstream planning. To this end, we propose Bi-level Variational Occlusion Models (BiVO), a two-step generative model that first predicts likely locations of occluded agents, and then generates likely trajectories for the occluded agents. In contrast to existing methods, BiVO outputs a trajectory distribution which can then be sampled from and integrated into standard downstream planning. We evaluate the method in closed-loop replay simulation using the real-world nuScenes dataset. Our results suggest that BiVO can successfully learn to predict occluded agent trajectories, and these predictions lead to better subsequent motion plans in critical scenarios.
@inproceedings{christianos2023planning,
title={Planning with Occluded Traffic Agents using Bi-Level Variational Occlusion Models},
author={Filippos Christianos and Peter Karkus and Boris Ivanovic and Stefano V. Albrecht and Marco Pavone},
booktitle={International Conference on Robotics and Automation (ICRA)},
year={2023}
}
2022
Filippos Christianos, Peter Karkus, Boris Ivanovic, Stefano V. Albrecht, Marco Pavone
Planning with Occluded Traffic Agents using Bi-Level Variational Occlusion Models
arXiv:2210.14584, 2022
Abstract | BibTex | arXiv
autonomous-driving
Abstract:
Reasoning with occluded traffic agents is a significant open challenge for planning for autonomous vehicles. Recent deep learning models have shown impressive results for predicting occluded agents based on the behaviour of nearby visible agents; however, as we show in experiments, these models are difficult to integrate into downstream planning. To this end, we propose Bi-level Variational Occlusion Models (BiVO), a two-step generative model that first predicts likely locations of occluded agents, and then generates likely trajectories for the occluded agents. In contrast to existing methods, BiVO outputs a trajectory distribution which can then be sampled from and integrated into standard downstream planning. We evaluate the method in closed-loop replay simulation using the real-world nuScenes dataset. Our results suggest that BiVO can successfully learn to predict occluded agent trajectories, and these predictions lead to better subsequent motion plans in critical scenarios.
@misc{christianos2022bivo,
title={Planning with Occluded Traffic Agents using Bi-Level Variational Occlusion Models},
author={Filippos Christianos and Peter Karkus and Boris Ivanovic and Stefano V. Albrecht and Marco Pavone},
year={2022},
eprint={2210.14584},
archivePrefix={arXiv}
}