Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Wonho-Bae
2023
Yi Ren, Shangmin Guo, Wonho Bae, Danica J. Sutherland
How to Prepare Your Task Head for Finetuning
International Conference on Learning Representations, 2023
Abstract | BibTex | arXiv
ICLRdeep-learningtransfer-learning
Abstract:
In the era of deep learning, transferring information from a pretrained network to a downstream task by finetuning has many benefits. The choice of task head plays an important role in fine-tuning, as the pretrained and downstream tasks are usually different. Although there exist many different designs for finetuning, a full understanding of when and why these algorithms work has been elusive. We analyze how the choice of task head controls feature adaptation and hence influences the downstream performance. By decomposing the feature's learning dynamics, we find the key aspect is the training accuracy and loss at the beginning of finetuning, which determines the "energy" available for the feature's adaptation. We identify a significant trend in the effect of changes in this initial energy on the resulting features after finetuning. Specifically, as the energy increases, the Euclidean and cosine distances between the resulting and original features increase, while their dot product (and the resulting features’ norm) first increases and then decreases. Inspired by this, we give several practical principles that lead to better downstream performance. We analytically prove this trend in an overparamterized linear setting and verify its applicability to different experimental settings.
@inproceedings{ ren2023how,
title={How to Prepare Your Task Head for Finetuning},
author={Yi Ren and Shangmin Guo and Wonho Bae and Danica J. Sutherland},
booktitle={International Conference on Learning Representations (ICLR)},
year={2023},
url={https://openreview.net/forum?id=gVOXZproe-e}
}