Publications
For news about publications, follow us on X:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
transfer-learning
2023
Yi Ren, Shangmin Guo, Wonho Bae, Danica J. Sutherland
How to Prepare Your Task Head for Finetuning
International Conference on Learning Representations, 2023
Abstract | BibTex | arXiv
ICLRdeep-learningtransfer-learning
Abstract:
In the era of deep learning, transferring information from a pretrained network to a downstream task by finetuning has many benefits. The choice of task head plays an important role in fine-tuning, as the pretrained and downstream tasks are usually different. Although there exist many different designs for finetuning, a full understanding of when and why these algorithms work has been elusive. We analyze how the choice of task head controls feature adaptation and hence influences the downstream performance. By decomposing the feature's learning dynamics, we find the key aspect is the training accuracy and loss at the beginning of finetuning, which determines the "energy" available for the feature's adaptation. We identify a significant trend in the effect of changes in this initial energy on the resulting features after finetuning. Specifically, as the energy increases, the Euclidean and cosine distances between the resulting and original features increase, while their dot product (and the resulting features’ norm) first increases and then decreases. Inspired by this, we give several practical principles that lead to better downstream performance. We analytically prove this trend in an overparamterized linear setting and verify its applicability to different experimental settings.
@inproceedings{ ren2023how,
title={How to Prepare Your Task Head for Finetuning},
author={Yi Ren and Shangmin Guo and Wonho Bae and Danica J. Sutherland},
booktitle={International Conference on Learning Representations (ICLR)},
year={2023},
url={https://openreview.net/forum?id=gVOXZproe-e}
}
Elliot Fosong, Arrasy Rahman, Ignacio Carlucho, Stefano V. Albrecht
Learning Complex Teamwork Tasks Using a Sub-task Curriculum
AAMAS Workshop on Multiagent Sequential Decision Making Under Uncertainty, 2023
Abstract | BibTex | arXiv | Code
AAMASmulti-agent-rlad-hoc-teamworktransfer-learning
Abstract:
Training a team to complete a complex task via multi-agent reinforcement learning can be difficult due to challenges such as policy search in a large policy space, and non-stationarity caused by mutually adapting agents. To facilitate efficient learning of complex multi-agent tasks, we propose an approach which uses an expert-provided curriculum of simpler multi-agent sub-tasks. In each sub-task of the curriculum, a subset of the entire team is trained to acquire sub-task-specific policies. The sub-teams are then merged and transferred to the target task, where their policies are collectively fined tuned to solve the more complex target task. We present MEDoE, a flexible method which identifies situations in the target task where each agent can use its sub-task-specific skills, and uses this information to modulate hyperparameters for learning and exploration during the fine-tuning process. We compare MEDoE to multi-agent reinforcement learning baselines that train from scratch in the full task, and with naïve applications of standard multi-agent reinforcement learning techniques for fine-tuning. We show that MEDoE outperforms baselines which train from scratch or use naïve fine-tuning approaches, requiring significantly fewer total training timesteps to solve a range of complex teamwork tasks.
@inproceedings{fosong2023learning,
title={Learning complex teamwork tasks using a sub-task curriculum},
author={Elliot Fosong, Arrasy Rahman, Ignacio Carlucho and Stefano V. Albrecht},
booktitle={AAMAS Workshop on Multiagent Sequential Decision Making under Uncertainty},
year={2023},
}
2022
Shangmin Guo, Yi Ren, Stefano V. Albrecht, Kenny Smith
Sample Relationships through the Lens of Learning Dynamics with Label Information
NeurIPS Workshop on Interpolation and Beyond, 2022
Abstract | BibTex | arXiv
NeurIPSiterated-learningdeep-learningtransfer-learning
Abstract:
Although much research has been done on proposing new models or loss functions to improve the generalisation of artificial neural networks (ANNs), less attention has been directed to the data, which is also an important factor for training ANNs. In this work, we start from approximating the interaction between two samples, i.e. how learning one sample would modify the model's prediction on the other sample. Through analysing the terms involved in weight updates in supervised learning, we find that the signs of labels influence the interactions between samples. Therefore, we propose the labelled pseudo Neural Tangent Kernel (lpNTK) which takes label information into consideration when measuring the interactions between samples. We first prove that lpNTK would asymptotically converge to the well-known empirical Neural Tangent Kernel in terms of the Frobenius norm under certain assumptions. Secondly, we illustrate how lpNTK helps to understand learning phenomena identified in previous work, specifically the learning difficulty of samples and forgetting events during learning. Moreover, we also show that lpNTK can help to improve the generalisation performance of ANNs in image classification tasks, compared with the original whole training sets.
@inproceedings{guo2022relationship,
title={Sample Relationships through the Lens of Learning Dynamics with Label Information},
author={Shangmin Guo and Yi Ren and Stefano V. Albrecht and Kenny Smith},
booktitle={NeurIPS 2022 Workshop on Interpolation and Beyond},
year={2022}
}